Skip to main content

Cytoskeletal Networks and Osmotic Pressure in Relation to Cell Structure and Motility

  • Conference paper
Mechanics of Swelling

Part of the book series: NATO ASI Series ((ASIH,volume 64))

Abstract

The motility of many cell types proceeds sporadically, by a sequence of propulsive and contractile movements. These movements appear to be controlled by proteins acting upon the actin cytoskeletal network which induce gel-sol transformations in specific regions of the cytoplasm. However, the forces that actually drive these cytoplasmic motions remain obscure; indeed there may be several force generating systems which dominate different types of motile events. For example, directed locomotion may involve the same direct mechanochemical coupling as occurs within muscles, in conjunction with other forces such as membrane bending, gel swelling and elasticity, or osmotic and hydrostatic pressures. In this chapter we will review the elastic properties of cytoskeletal protein networks. It is these networks that provide elastic resistance to cell deformation, and whose rearrangement may allow directed motion in response to externally or internally generated forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bray D, Money N, Harold F and Bamburg J (1991) Responses of growth cones to changes in osmolality of the surrounding medium. J Cell Sci 98:507–515

    PubMed  Google Scholar 

  • Cortese JD, Schwab B 3rd, Frieden C and Elson EL (1989) Actin polymerization induces a shape change in actin-containing vesicles. Proc Natl Acad Sei USA 86:5773–7

    Article  CAS  Google Scholar 

  • Cunningham C, Stossel T and Kwiatkowski D (1991a) Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science 251:1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, CC, et al. (1991b) manuscript submitted

    Google Scholar 

  • deGennes PG (1976) Dynamics of entangled polymer solutions. I. The Rouse model. Macromolecules 9:587–593

    Article  CAS  Google Scholar 

  • Elson EL (1988) Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem 17:397–430

    Article  PubMed  CAS  Google Scholar 

  • Felder S and Elson E (1990) Mechanics of fibroblast locomotion: Quantitative analysis of forces and motions at the leading lamellas of fibroblasts. J Cell Biol 111:2513–2526

    Article  PubMed  CAS  Google Scholar 

  • Gallez D and Coakley W (1986) Interfacial instability at cell membranes. Prog Biophys Molec Biol 48:155–199

    Article  CAS  Google Scholar 

  • Hartwig J and Kwiatkowski D (1991) Actin-binding proteins. Curr Op Cell Biol 3:87–97

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH and Stossel TP (1981) The structure of actin-binding protein molecules in solution and interaction with actin filaments. J Mol Biol 145:563–581

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Zaner KS and Stossel TP (1987) Nonideality of volume flows and phase transitions of F-actin solutions in response to osmotic stress. Biophys J 51:745–53

    Article  PubMed  CAS  Google Scholar 

  • Janmey P, Euteneuer U, Traub P and Schliwa M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113:155–160

    Article  PubMed  CAS  Google Scholar 

  • Janmey P (1991) A torsion pendulum for measurement of the viscoelastic properties of biopolymers and its application to actin networks. J Biochem Biophys Meth 22:41–53

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Hvidt S, Lamb J and Stossel TP (1990) ABP-actin gels resemble covalently crosslinked networks. Nature 345:89–92

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Hvidt S, Peetermans J, Lamb J, Ferry JD and Stossel TP (1988) Viscoelasticity of F-actin and F-actin/gelsolin complexes. Biochemistry 27:8218–27

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Peetermans J, Zaner KS, Stossel TP and Tanaka T (1986) Structure and mobility of actin filaments as measured by quasielastic light scattering, viscometry, and electron microscopy. J Biol Chem 261:8357–8362 Kokufata E, Zhang Y-Q and Tanaka T (1991) Saccharide-sensitive phase transition of a lectin-loaded gel. Nature 351:302–304

    Google Scholar 

  • Llerenas E and Cid M (1985) The molecular interaction between F-actin and lecithin in a phospholipid monolayer system. Bol Estud Med Biol Mex 33:33–39

    CAS  Google Scholar 

  • Mozzarelli A, Hofrichter J and Eaton W (1987) Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo. Science 237:500–506

    Article  PubMed  CAS  Google Scholar 

  • Odell, G. P. Janmey, G. Oster (1991). Actin polymerization and filopodial protrusion, (to appear)

    Google Scholar 

  • Oster G (1988) Biophysics of the leading lamella. Cell Motil. Cytoskel. 10:164–171

    Article  CAS  Google Scholar 

  • Oster, G., L. Cheng, H.-P.H. Moore A. Perelson (1989). Vesicle formation in the Golgi apparatus. J. Theo. Biol. 141:463–504.

    Article  CAS  Google Scholar 

  • Oster G, Perelson A and Tilney L (1982) A mechanical model for acrosomal extension in Thyone. J Math Biol 15:259–265

    Article  Google Scholar 

  • Oster G and Perleson A (1987) The physics of cell motility. J Cell Sci Suppl 8:35–54

    PubMed  CAS  Google Scholar 

  • Pollard TD and Cooper JA (1986) Actin and actin-binding proteins. Ann Rev Biochem 55:987–1035

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP, Chaponnier C, Ezzell RM, Hartwig JH, Janmey PA, Kwiatkowski DJ, Lind SE, Smith DB, Southwick FS, Yin HL and Zaner KS (1985) Non-muscle actin-binding proteins. Ann Rev Cell Biol 1:353–402

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Yamazaki M and Ito T (1989) Osmoelastic coupling in biological structures: formation of parallel bundles of actin filaments in a crystalline-like structure caused by osmotic stress. Biochemistry 28:6513–8

    Article  PubMed  CAS  Google Scholar 

  • Yin HL (1987) Gelsolin: calcium- and polyphosphoinositide-regulated actin-modulating protein. Bioessays 7:176–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janmey, P.A., Cunningham, C.C., Oster, G.F., Stossel, T.P. (1992). Cytoskeletal Networks and Osmotic Pressure in Relation to Cell Structure and Motility. In: Karalis, T.K. (eds) Mechanics of Swelling. NATO ASI Series, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84619-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84619-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84621-2

  • Online ISBN: 978-3-642-84619-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics