Skip to main content

Biome Modelling and the Carbon Cycle

  • Conference paper
The Global Carbon Cycle

Part of the book series: NATO ASI Series ((ASII,volume 15))

Abstract

Structurally and functionally distinct ecosystem complexes, known as biomes, occur in different climates. There are several global biome classifications but most recognize 15–20 biomes, and all agree on the nature and approximate extent of a number of such easily identifiable entities as the tundra, hot deserts, temperate deciduous forests and tropical rain forests. Differences between biomes are important for the carbon cycle because they account for much of the spatial variation in the size of the biomass and soil carbon stores. Biomass carbon storage is typically < 1 kg m-2 in tundra and deserts, ca 10 kg m-2 in many temperate forests and ca 20 kg m-2 in tropical rain forest (Olson et al. 1983). Soil carbon storage is typically < 3 kg m-2 in hot deserts, ca 10 kg m-2 in tropical rain forest, ca 15 kg m-2 in many temperate forests and > 15 kg m-2 in the tundra (Post et al. 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Faure H, Faure-Denard L, McGlade JM, Woodward FI (1990) Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348:711–714

    Article  Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG, Zindler A (1990) Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–410

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–414

    Article  Google Scholar 

  • Bartlein PJ (1988) Late-Tertiary and Quaternary palaeo-environments. In: Huntley B, Webb III T (eds) Vegetation history. Kluwer, Dordrecht, p 113

    Chapter  Google Scholar 

  • Box EO (1981) Macroclimate and plant forms: an introduction to predictive modelling in phytogeography. Junk, The Hague

    Google Scholar 

  • Broccoli AJ, Manabe S (1987) The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Climate Dynamics 1:87–99

    Article  Google Scholar 

  • COHMAP Members (1988) Climatic changes of the last 18,000 years: observations and model simulations. Science 241:1043–1052

    Article  Google Scholar 

  • Crawley MJ (1986) Plant ecology. Blackwell, Oxford

    Google Scholar 

  • Crowley TJ (1991) Ice age carbon. Nature 352:575–576

    Article  Google Scholar 

  • Crowley TJ, North GR (1991) Paleoclimatology. Oxford University Press, New York

    Google Scholar 

  • Davis MB (1989) Lags in vegetation response to greenhouse warming. Clim Change 15:75–82

    Article  Google Scholar 

  • Davis MB (1991) Research questions posed by the paleo-ecological record of global change. In: Bradley RS (ed) Global Changes of the Past. UCAR/OIES, Boulder, p 385

    Google Scholar 

  • Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3:343–360

    Article  Google Scholar 

  • Emanuel WR, Shugart HH, Stevenson MP (1985) Climate change and the broad-scale distribution of terrestrial ecosystem complexes. Clim Change 7:29–43

    Article  Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Pl Physiol Mol Biol 40:503–537

    Article  Google Scholar 

  • Federer CA (1982) Transpirational supply and demand: plant, soil and atmospheric effects evaluated by simulation. Water Resources Res 18:355–362

    Article  Google Scholar 

  • Grimm EC (1983) Chronology and dynamics of vegetation change in the paririe-woodland region of southern Minnesota. New Phytol 93:311–335

    Article  Google Scholar 

  • Grimm EC (1984) Fire and other factors controlling the Big Woods vegetation. Ecol Monogr 54:291–311

    Article  Google Scholar 

  • Guetter PJ, Kutzbach JE (1990) A modified Koppen classification applied to model simulations of glacial and interglacial climates. Clim Change 16:193–215

    Article  Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity. American Geophysical Union, Washington, p 130

    Chapter  Google Scholar 

  • Holdridge LR (1947) Determination of world formations from simple climatic data. Science 105:367–368

    Article  Google Scholar 

  • Jarvis, PG, MacNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49

    Article  Google Scholar 

  • Koppen W (1936) Das Geographisches System der Klimate. In Koppen W, Geiger, R (eds) Handbuch der Klimatologie, I(C). Borntraeger, Berlin

    Google Scholar 

  • Kutzbach JE, Guetter PJ (1986) The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. J Atm Sci 43:1726–1759

    Article  Google Scholar 

  • Kutzbach JE, Street-Perrott FA (1985) Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 317:130–134

    Article  Google Scholar 

  • Kutzbach JE, Street-Perrott FA, Ruddiman WF, Webb III T, Wright Jr HE (eds) (1992) Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis, in press

    Google Scholar 

  • Larcher W (1983) Physiological plant ecology, 2nd edn. Springer, Berlin

    Google Scholar 

  • Leemans R (1990) Possible changes in natural vegetation patterns due to a global warming. WP-90–08, IIASA, Laxenburg

    Google Scholar 

  • Leemans R, Cramer W (1991) The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a terrestrial grid. RR-91–18, IIASA, Laxenburg

    Google Scholar 

  • MacNaughton KG (1986) Regional evaporation models. In: Rosenzweig C, Dickinson R (eds) Climate-vegetation interactions. UCAR/OIES, Boulder, p 103

    Google Scholar 

  • Manabe S, Hahn DG (1977) Simulation of the tropical climate of an ice age. J Geophys Research 82:3889–3911

    Article  Google Scholar 

  • Monserud RA, Leemans R (1992) The comparison of global vegetation maps. Ecol Modelling, in press

    Google Scholar 

  • Müller JM (1982) Selected climatic data for a global set of standard stations for vegetation science. Junk, The Hague

    Book  Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. ORNL-5862, Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  Google Scholar 

  • Prentice IC (1986) Vegetation response to past climatic variation. Vegetatio 67:131–141

    Article  Google Scholar 

  • Prentice IC, Sarnthein M (1992) Self-regulatory processes in the biosphere in the face of climate change. In Eddy J (ed) Global changes in the perspective of the past. Wiley, Chichester, in press

    Google Scholar 

  • Prentice IC, Solomon AM (1991) Vegetation models and global change. In: Bradley RS (ed) Global changes of the past. UCAR/OIES, Boulder, p 365

    Google Scholar 

  • Prentice IC, Sykes MT, Cramer W (1991) The possible dynamic responses of northern forests to greenhouse warming. Global Ecol Biogeog Lett 1:129–135

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992a) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeog, in press

    Google Scholar 

  • Prentice IC, Sykes MT, Cramer W (1992b) A simulation model for the transient effects of climate change on forest landscapes. Ecol Modelling, in press

    Google Scholar 

  • Prentice IC, Webb RS, Ter-Mikhaelian MT, Solomon AM, Smith TM, Pitovranov SE, Nikolov NE, Minin AA, Leemans R, Lavorel S, Korzukhin MD, Hrabovsky JP, Helmisaari HO, Harrison SP, Emanuel WR, Bonan GB (1989) Developing a global vegetation dynamics model: results of a summer workshop. RR-89–7, IIASA, Laxenburg

    Google Scholar 

  • Prentice KC (1990) Bioclimatic distribution of vegetation for general circulation model studies. J Geophys Res 95:11 811–11 830

    Article  Google Scholar 

  • Prentice KC, Fung IY (1990) The sensitivity of terrestrial carbon storage to climate change. Nature 346:48–51

    Article  Google Scholar 

  • Rasool SI (1984) On dynamics of deserts and climate. In: Houghton JT (ed) The global climate. Cambridge University Press, Cambridge, p 107

    Google Scholar 

  • Sakai A (1979) Freezing avoidance mechanism of primordial shoots of conifer buds. Plant Cell Physiol 20:1381–1390

    Google Scholar 

  • Sakai A, Weiser CJ (1973) Freezing resistance of trees in North America with reference to tree regions. Ecology 54:118–126.

    Article  Google Scholar 

  • Schlesinger ME, Mitchell JFB (1985) Model projections of the equilibrium climatic response to increased carbon dioxide. In: MacCracken MC, Luther FM (eds) Projecting the climatic effects of increasing carbon dioxide. ER-0237, US-DOE, Washington, p 81

    Google Scholar 

  • Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234

    Article  Google Scholar 

  • Shackleton NJ (1977) Carbon-13 in Uvigerina: tropical rain forest history and the equatorial Pacific carbonate dissolution cycles. In: Anderson NR, Malahoff A (eds) The fate of fossil fuel in the ocean. Plenum, New York, p 401

    Google Scholar 

  • Shugart HH, Antonovsky MYa, Jarvis PG, Sandford AP (1986) CO2, climatic change and forest ecosystems. In: Bolin B, Döös BR, Jäger J, Warrick RA (eds) The greenhouse effect, climatic change, and ecosystems. Wiley, Chichester, p 475

    Google Scholar 

  • Solomon AM, Shugart HH (eds) (1992) Vegetation dynamics and global change. Cambridge University Press, Cambridge, in press

    Google Scholar 

  • Street-Perrott FA, Mitchell JFB, Marchand DS, Brunner JS (1990) Milankovitch and albedo forcing of the tropical monsoons: a comparison of geological evidence and numerical simulations for 9000 yBP. Trans Roy Soc Edinburgh 81:407–427

    Article  Google Scholar 

  • Walter H (1979) Vegetation of the earth and ecological systems of the geo-biosphere, 2nd edn. Springer, New York

    Google Scholar 

  • Webb III T (1988) Eastern North America. In: Huntley B, Webb III T (eds) Vegetation history. Kluwer, Dordrecht, p 385

    Chapter  Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Woodward FI (1990) Global change: translating plant ecophysiological responses to ecosystems. Trends Ecol Evol 5:308–311

    Article  Google Scholar 

  • Zobler L (1986) A world soil file for global climate modeling. NASA Tech Memo 87802

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prentice, I.C. (1993). Biome Modelling and the Carbon Cycle. In: Heimann, M. (eds) The Global Carbon Cycle. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84608-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84608-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84610-6

  • Online ISBN: 978-3-642-84608-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics