Skip to main content

Implications of CO2 Effects on Vegetation for the Global Carbon Budget

  • Conference paper
Book cover The Global Carbon Cycle

Part of the book series: NATO ASI Series ((ASII,volume 15))

Abstract

On a geological timescale, the carbon dioxide concentration in the global atmosphere was, over the few millennia before industrialisation, about as low as it has ever been. It has probably been within that low range of 200 to 300 ppmv throughout the 2 million years of human evolution. To understand the role of vegetation in modulating recent anthropogenic global atmospheric change, examination of the reasons for the low pre-industrial CO2 concentration is instructive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Faure H, Faure-Denard L, McGlade JM, Woodward FI (1990) Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature 348:711–714

    Article  Google Scholar 

  • Albersheim, P (1965) Biogenesis of the cell wall. In: Bonner J, Varner JE (eds) Plant Biochemistry. Academic Press, New York, pp298–321

    Google Scholar 

  • Bacastow, R, Keeling CD (1973) Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle. II. Changes from AD. 1700 to 2070 as deduced from a geochemical model. In: Woodwell GM, Pecan EV (eds) Carbon and the biosphere. United States Atomic Energy Commission, Washington (CONF-720510), pp86–135

    Google Scholar 

  • Berner, R (1990) Atmospheric carbon dioxide levels over Phanerozoic time. Science 249:1382–1386

    Article  Google Scholar 

  • Berner, R (1991) A model for atmospheric CO2 over Phanerozoic time. American J Science 291:339–376

    Article  Google Scholar 

  • Boden, TA, Kanciruk P, Farrell MP (1990) Trends ’90: A Compendium of Data on Global Change. United States Department of Energy, Washington, D.C.

    Google Scholar 

  • Bolin B (1970) The carbon cycle. Scientific Amer 223:124–132

    Article  Google Scholar 

  • Bolin B (1983) The carbon cycle. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions. (SCOPE 21) John Wiley, Chichester, pp41–45

    Google Scholar 

  • Bosatta E, Agren GI (1985) Theoretical analysis of decomposition of heterogeneous substrates. Soil Biol Biochem 17:601–610

    Article  Google Scholar 

  • Broecker WS, Takahashi T, Simpson HJ, Peng T-H (1979) Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206:409–418

    Article  Google Scholar 

  • Conroy JP, Milham PJ, Barlow EWR (1992) Effect of phosphorus availability on the growth response of Eucalyptus grandis to high CO2. Plant Cell Environ (in press)

    Google Scholar 

  • Cure JD (1985) Carbon dioxide doubling responses: A crop survey. In: Strain BR and Cure JD (eds) Direct effects of increasing carbon dioxide on vegetation. DOE/ER-0238. United States Department of Energy, Washington, D.C., pp99–116

    Google Scholar 

  • Esser G (1987) Sensitivity of global carbon pools and fluxes to human and potential climatic impacts. Tellus 39B:245–260

    Article  Google Scholar 

  • Fogg GE (1991) Changing productivity of the oceans in response to a changing climate. Annals of Botany 67 (Suppl 1):57–60

    Google Scholar 

  • Folland CK, Karl TR, Vinnikov KYA (1990) Observed climate variations and change. In: Houghton JT, Jenkins GJ, Ephraums JJ. (eds) Climate Change: The IPCC Scientific Assessment. Intergovernmental Panel on Climate Change/WMO/UNEP/Cambridge University Press, Cambridge ppl96–238

    Google Scholar 

  • Freidli H, Lotscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice-core record of 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238

    Article  Google Scholar 

  • Freudenberg K (1964) The formation of lignin in the tissue and in vitro. In: Zimmermann MH (ed) The Formation of Wood in Forest Trees. Academic Press, New York, pp 203–218

    Google Scholar 

  • Garcia-Moya E, Imbamba SK, Kamnalrut A, Evenson JP, Hall DO, Long SP, Scurlock JMO (1988) Primary productivity of natural grass ecosystems of the tropics: a reassessment. In: Holm M (ed) Ecology of arable lands. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Gifford RM (1979) CO2 and plant growth under water and light stress: implications for balancing the global carbon budget. Search 10:316–318.

    Google Scholar 

  • Gifford RM (1980) Carbon storage by the biosphere. In: Pearman, GI (ed) Carbon dioxide and climate: Australian Research. Australian Academy of Science, Canberra, ppl67–181

    Google Scholar 

  • Gifford RM (1987) Global photosynthesis, atmospheric carbon dioxide and man’s requirements. In : Giovannozzi-Sermamii G, Nannipieri P (eds) Current perspective in environmental biogeochemistry. C.N.R.-I.P.R.A, Rome, Italy, pp413–444

    Google Scholar 

  • Gifford RM (1991) Impact of increasing atmospheric carbon dioxide concentration on the carbon balance of vegetation. Australia, Energy Research and Development Corporation Project Report No. ERDC 37,56p

    Google Scholar 

  • Gifford RM (1992) Interactions of carbon dioxide and growth limiting environmetal factors in vegetation productivity: Implications for the global carbon cycle. Advances in Bioclimatology 1:24–58

    Article  Google Scholar 

  • Gillis AM (1991) Why can’t we balance the globe’s carbon budget? BioScience 41:442–447

    Article  Google Scholar 

  • Goudriaan J (1991) Atmospheric CO2, global carbon fluxes and the biosphere. In: Rabbinge R, Goudriaan J, Keulen H van, Penning de Vries FWT, Laar HH van (eds) Theoretical production ecology: Reflections and prospects. Pudoc, Wageningen. pp 17–40

    Google Scholar 

  • Goudriaan J and Ketner P (1984) A simulation study for the global carbon cycle, including man’s impact on the biosphere. Climatic Change 6:167–192

    Article  Google Scholar 

  • Harmon, ME and Hua, C (1991) Coarse woody debris dynamics in two old-growth ecosystems. Bioscience 41:604–610

    Article  Google Scholar 

  • Higuchi T (1980) Lignin structure and morphological distribution in plant cell walls. In: Kirk TK, Higuchi T and Chang H-M (eds) Lignin biodegradation: Microbiology, chemistry and potential applications, Vol 1. CRC Press, Boca Raton, Florida, pp2–19

    Google Scholar 

  • Hocking PJ, Meyer CP (1991) Carbon dioxide enrichment decreases critical nitrate and nitrogen concentrations in wheat. J of Plant Nutrition 14:571–584

    Article  Google Scholar 

  • Houghton JT, Jenkins, Ephraums JJ (eds) (1990) Climate Change: The IPCC Scientific Assessment. Intergovernmental Panel on Climate Change, WMO/UNEP/Cambridge University Press, Cambridge 365p.

    Google Scholar 

  • Houghton RA (1991) Tropical deforestation and atmospheric carbon dioxide. Climiatic Change 19:99–118

    Article  Google Scholar 

  • Houghton RA, Boone RD, Fruci JR, Hobbie JE, Melillo JM, Palm CA, Peterson BJ, Shaver GR, Woodwell GM, Moore B, Skole DL, Myers N (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographical distribution and global flux. Tellus 398:122–139

    Google Scholar 

  • Hunt R, Hand DW, Hannah MA, Neal AM (1991) Response to CO2 enrichment in 27 herbaceous species. Functional Ecology 5:410–421

    Article  Google Scholar 

  • Idso SB (1991) Comment on “Modelling the seaonal contribution of a CO2 fertilization effect of the terrestrial vegetation to the amplitude increase in the atmosphere in atmospheric CO2 at Mauna Loa observatory: by G.H. Kohlmaier et al.” Tellus 43B:338–341

    Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Phil Trans R Soc Lond 329:361–368

    Article  Google Scholar 

  • Jenkinson DS, Adams DE, and Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351: 304–306.

    Article  Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase: Dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161:308–313

    Article  Google Scholar 

  • Keeling, C.D., Bacastow, R.B., Carter, AF., Piper, S.C., Whorf T.P., Heimann, M., Mook, W.G., Roeloffzen, H. (1989) A three-dimensioanl model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In: Peterson DH (ed) Aspects of climate variability in the Pacific and the Western Americas. American Geophysical Union, Geophysical Monograph 55, pp165–236

    Chapter  Google Scholar 

  • Kerr RA (1977) Carbon dioxide and climate: carbon budget still unbalanced. Science 197:1352–1353

    Article  Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield: An assemblage and analysis of 770 prior observations. United States Department of Agriculture, Water Conservation Lab., Phoenix, Arizona, WCL Report 14, 71p

    Google Scholar 

  • Kimball BA (1985) Adaptation of vegetation and management practices to a higher carbon dioxide world. In: Strain BR, Cure JD (eds) Direct effects of increasing carbon dioxide on vegetation. DOE/ER-0238. United States Department of Energy, Washington D.C., pp185–204

    Google Scholar 

  • King AW, Emanuel WR, Post WM (1992) Projecting future concentrations of atmospheric CO2 with global carbon cycle models: The importance of simulating historical changes. Environmental Management 16:91–108

    Article  Google Scholar 

  • Lieth H. (1975) Modelling the primary productivity of the world. In: Lieth H, Whittaker RB (eds) Primary productivity of the biosphere. Springer-Verlag, New York, pp237–263

    Chapter  Google Scholar 

  • Myers N (1990) Tropical forests. In: Leggett J (ed) Global Warming: The Greenpeace Report. Oxford University Press, Oxford, pp372–399.

    Google Scholar 

  • Myers N (ed) (1989) Deforestation rates in tropical forests and their climatic implications. Friends of the Earth, London

    Google Scholar 

  • Norby RJ, O’Neill EG (1991) Leaf area compensation and nutrient interactions in CO2-enriched seedlings of yellow-poplar (Linodendron tulipifera L.). New Phytol 17:515–528

    Article  Google Scholar 

  • Ogren WL, Hunt LD (1978) Comparative biochemistry of ribulose bisphosphate carboxylase in higher plants. In: Siegelman HW, Hind G (eds) Photosynthetic carbon fixation. Plenum Press, New York, London, pp 127–138

    Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. ORNL-5862. Oak Ridge National Laboratory, Oak Ridge, Tennessee. 180p

    Google Scholar 

  • Paembonan SA, Hagihara A, Hozumi K (1991) Long-term measurement of CO2 release from the aboveground parts of a hinoki forest tree in relation to air temperature. Tree Physiology 8:399–405

    Google Scholar 

  • Platt T and Subba Rao DV (1975) Primary productivity of marine microphytes. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 249–280

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  Google Scholar 

  • Rawson HM (1992) Plant responses to elevated CO2 under different environmental conditions: responses to temperature. Aust J Bot (in review)

    Google Scholar 

  • Reiners WA (1973) Terrestrial detritus and the carbon cycle. Brookhaven Symp Biol 24:303–327

    Google Scholar 

  • Rodin LE, Basilevich NI, Rozov NN (1975) Productivity of the World’s main ecosystems. In: Reichle DE, Franklin JF, Goodall DW (eds) Productivity of the World ecosystems. National Academy of Science, Washington D.C. pp 15–17,20,22

    Google Scholar 

  • Rosenzweig, ML (1968) Net primary productivity of terrestrial communities: Prediction from climatological data. Amer. Naturalist 102:67–74

    Article  Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus.. Annual Reviews of Ecology and Systematics 8:51–81

    Article  Google Scholar 

  • Schlesinger ME, Mitchell JFB (1985) Model projections of the equilibrium climatic response to increased carbon dioxide. In: MacCracken MC, Luther FM (eds) Projecting the climatic effects of increasing carbon dioxide. DOE/ER-0237. United States Department of Energy, Washington DC. pp 81–147

    Google Scholar 

  • Schwartzman and Volk (1989) Biotic enhancement of weathering and the habitability of Earth. Nature 340:457–460

    Article  Google Scholar 

  • Siegenthaler, U, Oeschger H (1978) Predicting future atmospheric carbon dioxide levels: Review of approaches. Science 199:388–395

    Article  Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    Article  Google Scholar 

  • Thornley JHM, Fowler D, Cannell MGR (1991) Terrestrial carbon storage resulting from CO2 and nitrogen fertilization in temperate grasslands. Plant Cell and Environment 14:1007–1012

    Article  Google Scholar 

  • Tinker PB and Ineson P (1990) Soil organic matter and biology in relation to cclimate change. In: Scharpenseel HW, Schomaker M, Ayoub A (eds) Soils on a warmer Earth. Elsevier, Amsterdam, pp71–87

    Google Scholar 

  • Uchijima Z and Seino H (1985) Agroclimatological evaluation of net primary productivity of natural vegetation (1) Chikugo model for evaluating net primary productivity. Journal of Agricultural Meteorology 40:343–352

    Article  Google Scholar 

  • Volk, T (1989) Rise of angiosperms as a factor in long term climatic cooling. Geology 17:102–110

    Article  Google Scholar 

  • Watson RT, Rodhe H, Oeschger H, Siegenthaler U (1991) Greenhouse gases and aerosols. In: Climate Change: The IPCC scientific assessment, Intergovernmental Panel on Climate Change/WMO/UNEP/Cambridge University Press, Cambridge, pp 1–40

    Google Scholar 

  • Whittaker RH (1975) Communities and Ecosystems, 2nd edition. Macmillan, New York, 387p

    Google Scholar 

  • Wong SC (1980) Elevated atmospheric partial pressure of CO2 and plant growth I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 species. Oecologia 44:68–74

    Article  Google Scholar 

  • Woodwell GM, Houghton RA (1977) Biotic influences on the world carbon budget. In: Stumm W (ed) Global chemical cycles and their alterations by man, (Proceedings of the Dahlem Conference, Berlin), pp61–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gifford, R.M. (1993). Implications of CO2 Effects on Vegetation for the Global Carbon Budget. In: Heimann, M. (eds) The Global Carbon Cycle. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84608-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84608-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84610-6

  • Online ISBN: 978-3-642-84608-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics