Modelling the Marine Biota

  • Michael J. R. Fasham
Part of the NATO ASI Series book series (volume 15)


Marine biota play an important role in the natural carbon cycle of the ocean. Biogenic particles are exported from the euphotic zone to the deep ocean and this ‘biological’ pump, in conjunction with the ‘solubility’ pump, maintains the vertical gradient of dissolved inorganic carbon (DIC). Model studies (Bacastow & Maier-Raimer, 1990; Shaffer, this volume) and analysis of GEOSECS data (Volk & Hoffert, 1985) suggest that the biological pump contributes between 60%-83% of the total DIC pump on a world-wide basis. If the marine biota were removed, the atmospheric pCO2 would increase from its present values of 335 ppmv to 460 ppmv (Shaffer, this volume). However, when modelling the oceanic uptake of anthropogenic CO2 it is generally assumed that the marine biota play no role in this process (Sarmiento et al., 1992). The reason for this assumption is that the high concentration of bicarbonate ions in seawater implies that marine plants should not be limited by CO2 (Fogg, 1975) and that, therefore, the anthropogenic increase in surface water DIC will not produce any increase in primary production. This situation is in contrast to the terrestrial biosphere where there is evidence for a CO2 fertilisation effect (Gifford, this volume).


Mixed Layer Dissolve Inorganic Carbon Dissolve Organic Nitrogen Mixed Layer Depth Dissolve Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldredge AL, Silver MW (1988) Characteristics dynamics and significance of marine snow. Prog Oceanogr 20:41–82CrossRefGoogle Scholar
  2. Altabet MA (1989) Particulate new nitrogen fluxes in the Sargasso Sea. J Geophys Res 94:12771–12779CrossRefGoogle Scholar
  3. Andersen V, Nival P (1988) A pelagic ecosystem model simulating production and sedimentation of biogenic particles: role of salps and copepods. Mar Ecol Prog Ser 44:37–50CrossRefGoogle Scholar
  4. Andersen V, Nival P (1991) A model of the diel vertical migration of Zooplankton based on euphuasiids. J Mar Res 49:153–175CrossRefGoogle Scholar
  5. Anderson T (to be published) Modelling the influence of food C:N ratio and respiration on growth and excretion of marine plankton and bacteria. J Plank ResGoogle Scholar
  6. Angel MV (1984) Detrital organic fluxes through pelagic ecosystems. In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems: theory and practice. Plenum Press New York & London, p 475Google Scholar
  7. Angel MV (1986) Vertical migrations in the oceanic realm: possible causes and probable effects. In: Rankin MA (ed) Migration: mechanisms and adaptive significance. Contr Mar Sci (Suppl) 24:45–70Google Scholar
  8. Angel MV (1988) Vertical profiles of pelagic standing crop in the vicinity of the Azores Front and their implications to deep ocean ecology. Prog Ocean 20:1–46CrossRefGoogle Scholar
  9. Atkinson CA (1987) A nonlinear programming approach to the analysis of perturbed marine ecosystems under model parameter uncertainty. Ecol Modell 35:1–28CrossRefGoogle Scholar
  10. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263CrossRefGoogle Scholar
  11. Azam F, Hodson RE (1977) Size distribution and activity of marine heterotrophs. Limnol Oceanogr 22:492–501CrossRefGoogle Scholar
  12. Bacastow R, Maier-Reimer E (1990) Ocean-circulation model of the carbon cycle. Climate Dynamics 4:95–125CrossRefGoogle Scholar
  13. Bacastow R, Maier-Reimer E (1991) Dissolved organic carbon in modeling oceanic new production. Global Biogeochemical Cycles 5:71–85CrossRefGoogle Scholar
  14. Bé AWH, Foms JM, Roels OA (1971) Plankton abundance in the North Atlantic Ocean. In: Costlow JD (ed.) Fertility of the sea, vol 1. Gordon and Breach Science Publishers, p. 17Google Scholar
  15. Berger WH, Smetacek VS, Wefer G (1989) Ocean productivity and paleoproductivity-an overview. In: Berger WH, Smetacek VS, Wefer G (eds.) Productivity of the ocean: present and past. J Wiley & Sons Chichester, p 1Google Scholar
  16. Bjomsen PK (1986) Bacterioplankton growth yield in continuous seawater cultures. Mar Ecol Prog Ser 30:191–96CrossRefGoogle Scholar
  17. Brock TD (1981) Calculating solar radiation for ecological studies. Ecol Modell 14:1–19CrossRefGoogle Scholar
  18. Burkill PH, Edwards ES, John AWG, Sleigh MA (to be published) Microzooplankton and their herbivorous activity in the north eastern Atlantic Ocean. Deep-Sea ResGoogle Scholar
  19. Capriulo GM, Sherr EB, Sherr BF (1991) Trophic behaviour and related community feeding activities of heterotrophic marine protists. In: Reid PC, Turley CM, Burkill PH (eds) Protozoa and their role in marine processes. Springer-Verlag Berlin, p 217Google Scholar
  20. Carr MR (1986) Modelling the attenuation of broad band light down a water column. The Statistician 35:325–333CrossRefGoogle Scholar
  21. Chavez FP, Barber RT (1987) An estimate of new production in the equatorial Pacific. Deep-Sea Res 34:1229–1243CrossRefGoogle Scholar
  22. Clarke KR, Joint IR (1986) Methodology for estimating numbers of free-living and attached bacteria in estuarine water. Appl Env Microbiol 51:1110–1120Google Scholar
  23. Cole JJ, Pace ML, Findlay S (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10CrossRefGoogle Scholar
  24. Cullen JJ (1990) On models of growth and photosynthesis in phytoplankton. Deep-Sea Res 37:667–683CrossRefGoogle Scholar
  25. Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201CrossRefGoogle Scholar
  26. Dring MJ, Jewson DH (1982) What does 14C uptake by phytoplankton really measure? A theoretical modelling approach. Proc Roy Soc 214B:351–368Google Scholar
  27. Ducklow HW, Fasham MJR (1991) Bacteria in the greenhouse: modeling the role of oceanic plankton in the global carbon cycle. In: Mitchell R (ed) New concepts in enironmental microbiology. Wiley-Liss Inc. New York, p 1Google Scholar
  28. Ducklow HW, Purdie DA, Williams PJleB, Davies JM (1986) Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232:865–867CrossRefGoogle Scholar
  29. Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary production. Limnol Oceanogr 12:196–206CrossRefGoogle Scholar
  30. Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085Google Scholar
  31. Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680CrossRefGoogle Scholar
  32. Eppley RW, Renger EH, Harrison WG (1979) Nitrate and phytoplankton production in Southern California coastal waters. Limnol Oceanogr 24:483–494CrossRefGoogle Scholar
  33. Evans GT (1988) A framework for discussing seasonal succession and coexistence of phytoplankton species. Limnol Oceanogr 33:1037–1036CrossRefGoogle Scholar
  34. Evans GT, Parslow JS (1985) A model of annual plankton cycles. Biol Oceanogr 3:327–347Google Scholar
  35. Falkowski PG (ed) (1980) Primary productivity in the sea. Plenum Press New YorkGoogle Scholar
  36. Falkowski PG, Wirick CD (1981) A simulation model of the effects of vertical mixing on primary productivity. Mar Biol 65:69–75CrossRefGoogle Scholar
  37. Fasham MJR (1977) The application of some stochastic processes to the study of plankton patchiness. In: Steele JH (ed) Spatial pattern in plankton communities. Plenum Press New York and London, p 131Google Scholar
  38. Fasham MJR (1985) Flow analysis of materials in the marine euphotic zone. In: Ulanowicz RE, Platt T (eds) Ecosystem theory for biological oceanography. Can Bull Fish Aquat Sci 213:139–162Google Scholar
  39. Fasham MJR, Denman K, Brewer PG (1991) The Joint Global Ocean Flux Study: goals and objectives. In: Corell RW, Anderson PA (eds) Global Environmental Change. Springer-Verlag Berlin, p 246Google Scholar
  40. Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48:591–639Google Scholar
  41. Fasham MJR, Holligan PM, Pugh PR (1983) The spatial and temporal development of the spring phytoplankton bloom in the Celtic Sea April 1979. Prog Oceanogr 12:87–145CrossRefGoogle Scholar
  42. Fasham MJR, Platt T (1985) Photosynthetic response of phytoplankton to light: a physiological model. Proc R Soc Lond B 219:355–370CrossRefGoogle Scholar
  43. Fenchel T, Blackburn TH (1979) Bacteria and mineral cycling. Academic Press New YorkGoogle Scholar
  44. Fogg GE (1975) Primary productivity. In: Riley JP, Skirrow J (eds) Chemical Coeanography vol 2. Academic Press London, p 385Google Scholar
  45. Fogg GE (1983) The ecological significance of extracellular products of phytoplankton photosynthesis. Botanica Marina 26:3–14CrossRefGoogle Scholar
  46. Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog Ocean 16:147–194CrossRefGoogle Scholar
  47. Frost BW (1987) Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton particularly the large calanoid copepods Neocalanus spp. Mar Ecol Prog Ser 39:49–68CrossRefGoogle Scholar
  48. Gardner WD, Walsh ID (1990) Distribution of macroaggregates and fine-grained particles across a continental margin and their potential role in fluxes. Deep-Sea Res 37:401–411CrossRefGoogle Scholar
  49. Geider RJ, Platt T (1986) A mechanistic model of photadaptation in microalgae. Mar Ecol Prog Ser 30:85–92CrossRefGoogle Scholar
  50. Gifford R (1992) Implications of C02 effects on plants for the global carbon cycle. This volumeGoogle Scholar
  51. Glover DM, Brewer PG (1988) Estimates of winter-time mixed layer nutrient concentrations in the North Atlantic. Deep-Sea Res 35:1525–1546CrossRefGoogle Scholar
  52. Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32:239–1252CrossRefGoogle Scholar
  53. Harris GP (1986) Phytoplankton ecology: structure, function and fluctuation. Chapman and Hall LondonCrossRefGoogle Scholar
  54. Harrison WG, Platt T, Lewis MR (1987) F-ratio and its relationship to ambient nitrate concentration in coastal waters. J Plank Res 9:235–248CrossRefGoogle Scholar
  55. Hofmann EE, Klinick JM, Paffenhofer G-A (1981) Concentrations and vertical fluxes of Zooplankton fecal pellets on a continental shelf. Mar Biol 61:327–335CrossRefGoogle Scholar
  56. Hofmann EE (1988) Plankton dynamics on the outer southeastern US continental shelf Part ΙII: A coupled physical-biological model. J mar res 9:919–946CrossRefGoogle Scholar
  57. Hofmann EE, Ambler JW (1988) Plankton dynamics on the outer southeastern US continental shelf Part II: a time-dependent model. J mar res 46:883–917CrossRefGoogle Scholar
  58. Hofmann EE, Pietrafesa LJ, Klinick JM, Atkinson LP (1980) A time-dependent model of nutrient distribution in continental shelf waters. Ecol Modell 10:193–214CrossRefGoogle Scholar
  59. Isemer HJ, Hasse L (1985) The Bunker climate atlas of the North Atlantic Ocean vol 1: Observations. Springer-Verlag BerlinGoogle Scholar
  60. Iwasa Y, Andreason V, Levin S (1987) Aggregation in model ecosystems I. Perfect aggregation, Ecol Model 37:287–302CrossRefGoogle Scholar
  61. Jamart BM, Winter DF, Banse K, Anderson GC, Lam RK (1977) A theoretical study of phytoplankton growth and nutrient distribution in the Pacific Ocean of the northwestern U S coast. Deep-Sea Res 24:753–773CrossRefGoogle Scholar
  62. Jamart BM, Winter DF, Banse K (1979) Sensitivity analysis of a mathematical model of phytoplankton growth and nutrient distribution in the Pacific Ocean off the northeastern US coast. J Plank Res 1:267–290CrossRefGoogle Scholar
  63. Jemigan RW, Tsokos IP (1980) A linear stochastic model for phytoplankton production in a marine ecosystem. Ecol Model 10:1–12CrossRefGoogle Scholar
  64. Jones R, Henderson EW (1986) The dynamics of nutrient regeneration and simulation studies of the nutrient cycle. J Conseil 43:216–236CrossRefGoogle Scholar
  65. Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of the Southern Ocean iron fertilisation on atmospheric C02 concentrations. Nature 349:772–775CrossRefGoogle Scholar
  66. Kiefer DA, Kremer JN (1981) Origins of vertical patterns of phytoplankton and nutrients in the temperate open ocean: a Stratigraphie hypothesis. Deep-Sea Res 28:1087–1106CrossRefGoogle Scholar
  67. Koike I, Hara S, Terauchi K, Kogure K (1990) Role of sub-micrometre particles in the ocean. Nature 345:242–244CrossRefGoogle Scholar
  68. Kremer JN (1983) Ecological implications of parameter uncertainty in stochastic simulation. Ecol Model 18:187–207CrossRefGoogle Scholar
  69. Kremer JN, Nixon SW (1977) A coastal marine ecosystem. Springer-Verlag New YorkGoogle Scholar
  70. Lancelot C, Billen G (1986) Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Adv Aquatic Microbiol 3:263–321Google Scholar
  71. Lederman TC, Tett P (1981) Problems in modelling the photosynthesislight relationship. Bot Mar 24:125–134CrossRefGoogle Scholar
  72. Levitus S (1982) Climatological atlas of the world ocean. NOAA Professional Paper 13, US Govt Printing Office Washington.Google Scholar
  73. Longhurst AR, Harrison WG (1988) Vertical nitrogen flux from the oceanic photic zone by diel migrant Zooplankton. Deep-Sea Res 35:881–889CrossRefGoogle Scholar
  74. Longhurst AR, Bedo A, Harrison WG, Head EJH, Sameoto DD (1990) Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res 37:685–694CrossRefGoogle Scholar
  75. Longhurst AR, Bedo A, Harrison WG, Head EJH, Horne EP, Irwin B, Morales C (1991) NFLUX: a test of vertical nitrogen flux by diel migrant biota. Deep-Sea Res 36:1705–1719CrossRefGoogle Scholar
  76. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343CrossRefGoogle Scholar
  77. McLaren LA (1963) Effects of temperature on the growth of Zooplankton and the adaptive value of vertical migration. J Fish Res Bd Can 20:685–727CrossRefGoogle Scholar
  78. Menzel DW, Ryther JH (1960) The annual cycle of primary production in the Sargasso Sea off Bermuda. Deep-Sea Res 6:351–367Google Scholar
  79. Menzel DW, Ryther JH (1961) Zooplankton in the Sargasso Sea off Bermuda and its relation to organic production. J Cons 26:250–258CrossRefGoogle Scholar
  80. Moloney CL, Bergh MO, Field JG, Newell RC (1986) The effect of sedimentation and microbial regeneration in a plankton community: a simulation investigation. J Plank Res 8:427–445CrossRefGoogle Scholar
  81. Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J Geophys Res 93 (C9): 10749–10768CrossRefGoogle Scholar
  82. Morel A, Berthon JF (1989) Surface pigments algal biomass and potential production of the euphotic zone: realtionships reinvestigated in view of remote sensing applications. Limnol Oceanogr 34:1547–1564CrossRefGoogle Scholar
  83. Murray JW, Downs JN, Strom S, Wei C-L, Jannasch HW (1989) Nutrient assimilation export production and 234Th scavenging in the eastern equatorial Pacific. Deep-Sea Res 36:1471–1489CrossRefGoogle Scholar
  84. Najjar RM (1990) Simulations of the phosphorus and oxygen cycles in the world ocean using a general circulation model. PhD dissertation Princeton Univ. Princeton New JerseyGoogle Scholar
  85. Newell RC (1984) The biological role of detritus in the marine environment In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems: theory and practice. Plenum Press New York & London, p 317Google Scholar
  86. Newell RC, Linley EAS (1984) Significance of microheterotrophs in the decomposition of phytoplankton: estimation of carbon and nitrogen flow based on the biomass of plankton communities. Mar Ecol Prog Ser 16:105–119CrossRefGoogle Scholar
  87. Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. J Wiley & Sons ChichesterGoogle Scholar
  88. Oberhuber JM (1988) An atlas based on the ‘COADS’ data set: the budgets of heat buoyancy and turbulent kinetic energy at the surface of the global ocean. Max-Panck-Institut für Meteorologie Report No 15 HamburgGoogle Scholar
  89. O’Neill RV, Angelis DL, Pastor JJ, Jackson BJ, Post WM (1989) Multiple nutrient limitations in ecological models. Ecol Modell 46:147–163CrossRefGoogle Scholar
  90. Pace ML, Knauer GA, Karl DM, Martin JH (1987) Particulate matter fluxes in the ocean: a predictive model. Nature 325:803–804CrossRefGoogle Scholar
  91. Pace ML, Glasser JE, Pomeroy LR (1984) A simulation analysis of continental shelf food webs. Mar Biol 82:47–63CrossRefGoogle Scholar
  92. Paffenhofer G-A, Knowles SC (1979) Ecological implications of fecal pellet size production and consumption by copepods. J Mar Res 37:35–49Google Scholar
  93. Parsons TP, Kessler TA (1987) An ecosystem model for the assessment of plankton production in relation to the survival of young fish. J Plank Res 9:125–137CrossRefGoogle Scholar
  94. Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956CrossRefGoogle Scholar
  95. Peng T-H, Broecker WS (1991) Dynamical limitations on the Anarctic iron fertilization. Nature 349:227–229CrossRefGoogle Scholar
  96. Peng T-H, Takahashi T, Broecker WS, Olafsson J (1987) Seasonal variability of carbon dioxide nutrients and oxygen in the northern North Atlantic surface water: observations and a model. Tellus 39B:439–458CrossRefGoogle Scholar
  97. Peters RH (1983) The ecological implications of body size. Cambridge University Press CambridgeGoogle Scholar
  98. Platt T, Denman KL, Jassby AD (1977) Modeling the productivity of phytoplankton In: Goldberg ED, McCave IN, O’Brien JJ, Steele JH (eds) The Sea vol 6. Wiley-Interscience New York, p 807Google Scholar
  99. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  100. Platt T, Harrison WG (1985) Biogenic fluxes of carbon and oxygen in the ocean. Nature 318:55–58CrossRefGoogle Scholar
  101. Platt T, Mann KH, Ulanowicz RE (1981) Mathematical models in biological oceanography. UNESCO Press ParisGoogle Scholar
  102. Platt T, Sathyendranth S (1988) Ocean primary production: Estimation by remote sensing at local and regional scales. Science 241:1613–1620CrossRefGoogle Scholar
  103. Platt T, Sathyendranath S, Ravindran P (1990) Primary production by phytoplankton: analytic solutions for daily rates per unit area of water surface. Proc R Soc Lond B 241:101–111CrossRefGoogle Scholar
  104. Pomeroy LR (1974) The ocean’s food web, a changing paradigm. Bioscience 24:499–504CrossRefGoogle Scholar
  105. Poulet SA (1983) Factors controlling utilization of non-algal diets by particle-grazing copepods: a review. Oceanologica Acta 6:221–234Google Scholar
  106. Riley GA, Stommel H, Bumpus DF (1949) Quantitative ecology of the plankton of the western North Atlantic. Bull Bing Ocean Coll 12(3): 1–169Google Scholar
  107. Rosenzweig ML (1971) Paradox of enrichment. Science 171:385–387CrossRefGoogle Scholar
  108. Sakshaug E, Kiefer DA, Andresen K (1989) A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum. Limnol Oceanogr 34:198–205CrossRefGoogle Scholar
  109. Sarmiento JL, Toggweiler JR, Najjar R (1988) Ocean carbon cycle dynamics and atmospheric pCO2. Phil Trans Roy Soc A:325 3–21CrossRefGoogle Scholar
  110. Sarmiento J L, Fasham MJR, Slater R, Toggweiler JR, Ducklow HW (1992) The role of biology in the chemistry of CO2 on the ocean. In: Farrell M (ed) Chemistry of the greenhouse effect. Lewis Publ. In pressGoogle Scholar
  111. Sarmiento JL, Orr JC, Siegenthaler U (1992) A perturbation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res In pressGoogle Scholar
  112. Sathyendrananth S, Platt T (1988) The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing. J Geophys Res 93:9270–9280CrossRefGoogle Scholar
  113. Schell DM (1974) Uptake and regeneration of free amino acids in marine waters of Southeast Alaska. Limnol Oceanogr 19:260–270CrossRefGoogle Scholar
  114. Shaffer G (1992) Marine Production. This volumeGoogle Scholar
  115. Sharp JH (1977) Excretion of organic matter: do healthy cells do it? Limnol Oceanogr 22:381–399CrossRefGoogle Scholar
  116. Sherr EB, Sherr BF, Albright LJ (1987) Bacteria: link or sink? Science 235:88–89CrossRefGoogle Scholar
  117. Sherr EB, Sherr BF (1988) Role of microbes in pelagic food webs: a revised concept. Limnol Oceanogr 33:1225–1227CrossRefGoogle Scholar
  118. Smith SD, Dobson FW (1984) The heat budget at Ocean Weather Ship Bravo. Atmos-Ocean 22:1–22CrossRefGoogle Scholar
  119. Steele JH (1958) Plant production in the northern North Sea. Scottish Home Department Marine Research Report No 7 HMSO EdinburghGoogle Scholar
  120. Steele JH (1974) The structure of marine ecosystems. Blackwell Scientific Publications OxfordGoogle Scholar
  121. Steele JH, Henderson EW (1992) The role of predation in plankton models. J Plank Res 14:157–172CrossRefGoogle Scholar
  122. Steele JH, Frost BW (1977) The structure of plankton communities. Phil Trans R Soc B 280:485–534CrossRefGoogle Scholar
  123. Stouffer RJ, Manabe S, Bryan K (1989) Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature 342:660–662CrossRefGoogle Scholar
  124. Susuki Y (1992) Dynamic cycle of dissolved organic carbon and marine productivity. This volumeGoogle Scholar
  125. Suttle CA, Chan AM, Cottrell MT (1991a) Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347:467–469CrossRefGoogle Scholar
  126. Suttle CA, Chan AM, Fuhrman JA (1991b) Dissolved free amino acids in the Sargasso Sea: uptake and respiration rates, turnover times, and concentrations. Mar Ecol Prog Ser 70:189–199CrossRefGoogle Scholar
  127. Taghon GL, Jumars PJ (1984) Variable ingestion rate and its role in optimal foraging behaviour of marine deposit feeders. Ecology 65:549–558CrossRefGoogle Scholar
  128. Taylor AH, Watson AJ, Ainsworth M, Robertson JE, Turner DR (1991) A modelling investigation of the role of phytoplankton in the balance of carbon at the surface of the North Atlantic. Global Biogeochemical Cycles 5:151–171CrossRefGoogle Scholar
  129. Tett P, Edwards A, Jones K (1986) A model for the growth of shelf-sea phytoplankton in summer. Est Coast Shelf Sci 23:641–672CrossRefGoogle Scholar
  130. Vinogradov ME, Menshutkin VV, Shushkina EA (1972) On Mathematical simulation of a pelagic ecosystem in tropical waters of the ocean. Mar Biol 16:261–268CrossRefGoogle Scholar
  131. Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: Natural variations archean to present. American Geophysical Union Washington DC. p 99CrossRefGoogle Scholar
  132. Walsh JJ (1975) A spatial simulation model of the Peru upwelling ecosystem. Deep-Sea Res 22:201–236Google Scholar
  133. Walsh JJ (1983) Death in the Sea: Enigmatic phytoplankton losses. Prog Oceanography 12:1–86CrossRefGoogle Scholar
  134. Walsh JJ (1988) On the nature of continental shelves. Academic Press San DiegoGoogle Scholar
  135. Walsh JJ, Dugdale RC (1972) Nutrient submodels and simulation models of phytoplankton production in the sea. In: Kramer J, Allen H (eds) Nutrients in natural waters. JWiley & Sons New York, p 171Google Scholar
  136. Wheeler PA, Kokkinakis SA (1990) Ammonium recycling limits nitrate use in the oceanic subarctic Pacific. Limnol Oceanogr 35:267–1278CrossRefGoogle Scholar
  137. Wiegert RG (1979) Population models: experimental tools for the analysis of ecosystems. In: Horn DJ, Mitchell R, Stairs GR (eds) Proceedings of colloquium on analysis of ecosystems. Ohio State University Press, p 239Google Scholar
  138. Williams R (1988) Spatial heterogeneity and niche differentiation in oceanic Zooplankton. In: Boxshall GA, Schminke HK (eds) Biology of Copepods. Hydrobiologia 167/168:151–159CrossRefGoogle Scholar
  139. Williams R, Robinson GA (1973) Primary production at Ocean Weather Ship India (59° 00’N, 19° 00’W) in the North Atlantic. Bull Mar Ecol 8:115–121Google Scholar
  140. Woods JD, Onken R (1982) Diurnal variation and primary production in the ocean-preliminary results of a Lagrangian ensemble model. J Plank Res 4:735–756CrossRefGoogle Scholar
  141. Wroblewski J (1975) The verically migrating deep scattering layer-its possible role in the creation of small scale phytoplankton patchiness in the ocean. In: Anderson NR, Zahuranec BJ (eds) Oceanic sound scattering prediction. Plenum Press New York, p 817Google Scholar
  142. Wroblewski J (1977) A model of phytoplankton plume formation during variable Oregon upwelling. J Mar Res 35:357–394Google Scholar
  143. Wroblewski J (1980) A simulation of the distribution of Acartia clausii during Oregon upwelling August 1973. J Plank Res 2:43–68CrossRefGoogle Scholar
  144. Wolf KU, Woods JD (1988) Lagrangian simulation of primary production in the physical environment-the deep chlorophyll maximum and nutricline In: Rothschild BJ (ed) Towards a theory of biological-physical interaction in the world ocean. Kluwer Dordrecht, p 51Google Scholar
  145. Wulff F, Field JG, Mann KH (eds) (1989) Network analysis in marine ecology. Coastal and Estuarine Studies vol 32 Springer-VerlagGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Michael J. R. Fasham
    • 1
  1. 1.James Rennell Centre for Ocean Circulation, Natural Environment Research CouncilChilworth Research CentreSouthamptonUK

Personalised recommendations