Skip to main content

Modelling the Present-Day Oceanic Carbon Cycle

  • Conference paper
The Global Carbon Cycle

Part of the book series: NATO ASI Series ((ASII,volume 15))

Abstract

Carbon dioxide is an important greenhouse gas, and its atmospheric increase causes concern because of a potential impact on the global climate. A prerequisite for assessing possible future climatic changes is a means to estimate the future development of the atmospheric CO2 concentration, given some energy consumption scenarios. For this purpose, models have been developed which represent the global carbon cycle and the processes which are important for the redistribution of anthropogenic CO2. This paper describes the carbon cycle mechanisms which are relevant in this context, the way in which they are integrated in models and some model results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacastow R, Maier-Reimer E (1990) Ocean-circulation model of the carbon cycle. Climate Dynamics 4: 95–126

    Article  Google Scholar 

  • Broecker WS, Peng T-H, Eng R (1980) Modeling the carbon system. Radiocarbon 22: 565–580

    Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the Sea. Eldigio Press Lamont-Doherty Geological Observatory Palisades NY

    Google Scholar 

  • Broecker WS, Peng T-H (1992) Interhemispheric transport of carbon dioxide by ocean circulation. Nature 356: 587–589

    Article  Google Scholar 

  • Broecker WS, Peng T-H, Ostlund G, Stuiver M (1985) The distribution of bomb radiocarbon in the ocean. J Geophys Res 90: 6953–6970

    Article  Google Scholar 

  • Bryan K, Komro FG, Rooth C (1984) The ocean’s transient response to global surface temperature anomalies. In: Hansen JE, Takahashi T (eds) Climate Processes and Climate Sensitivity. AGU Washigton DC Geophys Monograph 29: 29–38

    Chapter  Google Scholar 

  • Craig H (1969) Abyssal carbon and radiocarbon in the Pacific. J Geophys Res 74: 5491–5506

    Article  Google Scholar 

  • Enting IG (1990) Ambiguities in the calibration of carbon cycle models. Inverse Problems 6: L39-L46

    Article  Google Scholar 

  • Etcheto J, Boutin J, Merlivat L (1991) Seasonal variation of the CO2 exchange coefficient over the global ocean using satellite wind speed measurements. Tellus 43B: 247–255

    Google Scholar 

  • Friedli H, Loetscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) ice core record of the 13C/12C ratio of atmospheric carbon dioxide in the past two centuries. Nature 324: 237–238

    Article  Google Scholar 

  • Garrett C (1979) Mixing in the ocean interior. Dyn Atmos Oceans 3: 239–265

    Article  Google Scholar 

  • Garrett C (1982) On the parameterization of diapycnal fluxes due to double-diffusive intrusions. J Phys Oceanography 12: 952–959

    Article  Google Scholar 

  • Houghton RS (1991) The role of forests in affecting the greenhouse gas composition of the atmosphere. In: Wyman RL (ed) Global Climate Change and Life on Earth: 43–55 Chapman and Hall New York

    Google Scholar 

  • Joos F, Sarmiento JL, Siegenthaler U (1991a) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349: 772–775

    Article  Google Scholar 

  • Joos F, Siegenthaler U, Sarmiento JL (1991b) Possible effects of iron fertilization in the Southern Ocean on atmospheric CO2 concentration. Global Biogeochem Cycles: in press

    Google Scholar 

  • Keeling CD (1991) In: Boden TA, Sepanski RJ, Stoss FW (eds) Trends ’91-A Compendium of Global Change: 382–385. CDIAC Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge TN

    Google Scholar 

  • Keeling CD, Mook WG, Tans PP (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277: 121–123

    Article  Google Scholar 

  • Keeling CD, Bacastow RB, Carter AF, Piper SC, Whorf TP, Heimann M, Mook WG, Roeloffzen H (1989a) A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. Geophysical Monograph 55: 165–236

    Article  Google Scholar 

  • Keeling CD, Piper SC, Heimann M (1989b) A three dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. Geophysical Monograph 55: 305–363

    Article  Google Scholar 

  • Li Y-H, Peng T-H, Broecker WS, Östlund G (1984) The average vertical mixing coefficient for the oceanic thermocline. Tellus 36B: 212–217

    Article  Google Scholar 

  • Liss PS, Merlivat L (1986) In: Buat-Menard P (ed) The Role of Air-Sea Gas Exchange in Geochemical Cycling: 113–127

    Google Scholar 

  • Reidel Maier-Reimer E, Hasselmann K (1987) Transport and storage of CO2 in the ocean-an inorganic ocean-ciculation carbon cycle model. Climate Dynamics 2: 63–90

    Article  Google Scholar 

  • Marland G, Boden T (1991) In: Boden TA, Sepanski RJ, Stoss FW (eds) Trends ’91-A Compendium of Global Change: 386–389 CDIAC Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge TN

    Google Scholar 

  • Mook WG, Koopmans M, Carter AF, Keeling CD (1983) Seasonal, latitudinal and secular variations in the abundance and isotopic composition of atmospheric carbon dioxide. J Geophys Res 88: 10915–10933

    Article  Google Scholar 

  • Munk WH (1966) Abyssal recipes. Deep-Sea Res 13: 707–730

    Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315: 45–47

    Article  Google Scholar 

  • Oeschger H, Siegenthaler U, Schotterer U, Gugelmann A (1975) A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27: 168–192

    Article  Google Scholar 

  • Oeschger H, Heimann M (1983) Uncertainties in predictions of future atmospheric CO2 concentrations. J Geophys Res 88: 1258–1262

    Article  Google Scholar 

  • Peng T-H, Takahashi T, Broecker WS (1987) Seasonal variability of carbon dioxide, nutrients and oxygen in the North Atlantic surface water: observations and a model. Tellus 39B: 439–458

    Article  Google Scholar 

  • Quay PD, Tilbrook B, Wong CS (1992) Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256: 74–79

    Article  Google Scholar 

  • Sarmiento JL, Feely HW, Moore WS, Bainbridge AE, Broecker WS (1976) The relationship between vertical eddy diffusion and buoyancy gradient in the deep sea. Earth Planet Sci Lett 32: 357–370

    Article  Google Scholar 

  • Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356: 589–593

    Article  Google Scholar 

  • Sarmiento JL, Orr JC, Siegenthaler U (1992) A perturbation simulation of CO2 uptake in an Ocean General Circulation Model. J Geophys Res 97: 3621–3645

    Article  Google Scholar 

  • Shaffer G, Sarmiento JL (1992) Biogeochemical cycling in the global ocean 1. A new, analytical model with continuous vertical resolution and high latitude dynamics. J Geophys Res: in press

    Google Scholar 

  • Siegenthaler U (1983) Uptake of excess CO2 calculated by an outcrop diffusion model of the ocean. J Geophys Res 88: 3599–3608

    Article  Google Scholar 

  • Siegenthaler U (1986) Carbon dioxide: its natural cycle and anthropogenic perturbation. In: Buat-Menard P (ed) The Role of Air-Sea Exchange in Geochemical Cycling: 209–247 Reidel

    Google Scholar 

  • Siegenthaler U (1989) Carbon-14 in the oceans. In: Fritz P, Fontes J-C (eds) Handbook of Environmental Isotope Geochemistry vol 3, the Marine Environment: 75–137 Elsevier A Amsterdam

    Google Scholar 

  • Siegenthaler U, Oeschger H (1978) Predicting future atmospheric carbon dioxide levels. Science 199: 388–395

    Article  Google Scholar 

  • Siegenthaler U, Oeschger H (1987) Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39B: 140–154

    Article  Google Scholar 

  • Siegenthaler U, Joos F (1992) Studying anthropogenic CO2 perturbations and oceanic tracers using a diffusive-advective ocean model (HILDA). Tellus: in press

    Google Scholar 

  • Siegenthaler U, Heimann M, Oeschger H (1978) Model responses of the atmospheric CO2 level and 13C/12C ratio to biogenic CO2 input, in: Buat-Menard P (ed) Carbon Dioxide, Climate and Society: 79–87 Pergamon Press Oxford

    Google Scholar 

  • Siegenthaler U, Friedli H, Loetscher H, Moor E, Neftel A, Oeschger H, Stauffer B (1988) Stable-isotope ratios and concentration of CO2 in air from polar ice cores. Annals of Glaciology 10: 1–6

    Google Scholar 

  • Stuiver M, Quay P (1981) Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet Sci Lett 53: 349–362

    Article  Google Scholar 

  • Stuiver M, Östlund HG, McConnaughey TA (1981) GEOSECS Atlantic and Pacific results. In Bolin B (ed) Carbon Cycle Modelling SCOPE 16 Wily: 201–222

    Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247: 1431–1438

    Article  Google Scholar 

  • Toggweiler JR, Dixon K, Bryan K (1989a) Simulations of radiocarbon in a coarse resolution world ocean model 1. Steady state prebomb distributions. J Geophys Res 94: 8217–8242

    Article  Google Scholar 

  • Toggweiler JR, Dixon K, Bryan K (1989b) Simulations of radiocarbon in a coarse resolution world ocean model 2. Distributions of bomb-produced carbon 14. J Geophys Res 94: 8243–8264

    Article  Google Scholar 

  • Watson RT, Rodhe H, Oeschger H, Siegenthaler U (1990) Greenhouse gases and aerosols. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate Change-The IPCC Scientific Assessment: 1–40 Cambridge University Press

    Google Scholar 

  • Watson RT, Meira Filho LG, Sanhueza E, Janetos A (1992) Greenhouse gases: sources and sinks. In: Houghton JT, Callander BA, Varney SK (eds) Climate Change 1992-The Supplementary Report to the IPCC Scientific Assessment: 25–46 Cambridge University Press

    Google Scholar 

  • Welander P (1968) Theoretical forms for the vertical exchange coefficient in a stratified fluid with application to lakes and seas. Acta Reg Soc Sci Litt Gothoburgensis Geophys 1:1–27

    Google Scholar 

  • Wigley TML (1992) Balancing the carbon budget: implications for projections of future carbon dioxide concentration changes. Tellus: submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siegenthaler, U. (1993). Modelling the Present-Day Oceanic Carbon Cycle. In: Heimann, M. (eds) The Global Carbon Cycle. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84608-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84608-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84610-6

  • Online ISBN: 978-3-642-84608-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics