Skip to main content

Carbon Exchange Between the Terrestrial Biosphere and the Atmosphere

  • Conference paper
The Global Carbon Cycle

Part of the book series: NATO ASI Series ((ASII,volume 15))

Abstract

Carbon dioxide is presently the most important anthropogenic greenhouse gas, and in contrast to the other greenhouse gases, the human potential to rise its future atmospheric concentration seems to be very high, since the fossil carbon resources (coal, oil, natural gas) probably exceed 6.5 × 1012 tons (6,500 Gt) of carbon. The preindustrial CO2 concentration in the atmosphere of ca. 280 μl-l1 will double within the next 5–6 decades. The predicted global mean warming will then probably be 3.5 ±1.5 °C, according to climate models (Hansen et al. 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aselmann I, Lieth H (1983) The implementation of agricultural productivity into existing global models of primary productivity. In: Degens, Kempe, Soliman (eds.) Transport of carbon and minerals in major world rivers, Part 2, Mitt. Geolog. Paläontolog. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband 55: 107–118.

    Google Scholar 

  • Degens E T (ed.) (1982) Transport of carbon and minerals in the major world rivers, Part 1. Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband 52.

    Google Scholar 

  • Degens E T, Kempe S, Soliman H (eds.) (1983) Transport of carbon and minerals in major world rivers, Part 2. Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband 55.

    Google Scholar 

  • Degens E T, Kempe S, Herrera R (eds.) (1985) Transport of carbon and minerals in major world rivers, Part 3. Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband 58.

    Google Scholar 

  • Esser G (1984) The significance of biospheric carbon pools and fluxes for the atmospheric CO2: A proposed model structure. Progress in Biometeorology 3: 253–294.

    Google Scholar 

  • Esser G (1986) The carbon budget of the biosphere — structure and preliminary results of the Osnabrück Biosphere Model (in German with extended English summary). Veröff. Naturf. Ges. zu Emden von 1814, New Series Vol. 7, 160 pp. and 27 Figures.

    Google Scholar 

  • Esser G (1987) Sensitivity of global carbon pools and fluxes to human and potential climatic impacts. Tellus 39B: 245–260.

    Article  Google Scholar 

  • Esser G (1989) Global land use changes from 1860 to 1980 and future projections to 2500. Ecological Modelling 44: 307–316.

    Article  Google Scholar 

  • Esser G (1990) Modelling global terrestrial sources and sinks of CO2 with special reference to soil organic matter. In: Bouwman, A. F. (ed.) Soils and the Greenhouse Effect, Chapter 10: 247–261, John Wiley & Sons, Chichester · New York · Brisbane · Toronto · Singapore.

    Google Scholar 

  • Esser G (1991) Osnabrück-Biosphere-Model: structure, construction, results. In: Esser G, Overdieck D (eds.) Modern Ecology: Basic and Applied Aspects. Elsevier Sci. Publ. Amsterdam, Chapter 31: 679–709.

    Google Scholar 

  • Esser G (1992) Implications of climate change for production and decomposition in grasslands and coniferous forests. Invited paper for a SCOPE workshop in Woods Hole, Ma., April 1989, on “Ecosystem response to climate change: The effects of climate change on production and decomposition in coniferous forests and grasslands”; Ecological Applications 2 (1): 47–54.

    Article  Google Scholar 

  • Esser G, Aselmann I, Lieth H (1982) Modelling the Carbon Reservoir in the System Compartment “Litter”. Mitt. Geolog.-Paläontolog. Inst. Univ. Hamburg 52: 39–58. SCOPE/UNEP Sonderband.

    Google Scholar 

  • Esser G, Kohlmaier G H (1991) Modelling terrestrial sources of nitrogen, phosphorus, sulphur, and organic carbon to rivers. In: Degens E T, Kempe S, Richey J E (eds.) Biogeochemistry of major world rivers, SCOPE 42: 297–322, Wiley & Sons Chichester.

    Google Scholar 

  • Esser G, Lieth H (1989) Decomposition in tropical rain forests compared with other parts of the world. In: Lieth, Werger (eds.) Tropical Rain Forest Ecosystems. Ecosystems of the World Vol. 14B: 571–580, Elsevier Science Publ. Amsterdam.

    Google Scholar 

  • Esser G, Lieth H, Clüsener Godt M (1989) Assessment of P, K, Ca dynamics during land use changes. In: Ittekkot et al. (eds.) Facets of Modern Biogeochemistry, Chapter 10: 102–115, Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  • FAO-Unesco (1974 ff.) Soil Map of the World, 1:5,000,000. Vol. I-X Unesco Paris.

    Google Scholar 

  • FAO-Unesco (1980 ff.) Production Yearbook 1979 ff., Vol. 33 ff., FAO-Statistics Series No. 28, Rome.

    Google Scholar 

  • Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324: 237–238.

    Article  Google Scholar 

  • Goudriaan J (1990) Atmospheric CO2, global carbon fluxes and the biosphere. In: Rabbinge R, Goudriaan J, Keulen H van, Penning de Vries F W T, Laar H H van (eds.), Theoretical Production Ecology: reflections and prospects, pp 17–40. Pudoc Wageningen.

    Google Scholar 

  • Goudriaan J, Ketner P (1984) A simulation study for the global carbon cycle, including man’s impact on the biosphere. Climatic Change 6: 167–192.

    Article  Google Scholar 

  • Hansen J, Fung I, Lacis A, Rind D, Lebedeff S, Ruedy R, Russell G, Stone P (1988) Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J. Geophys. Research 93: 9341–9364.

    Article  Google Scholar 

  • Houghton R A (1991) Tropical deforestation and atmospheric carbon dioxide. Climatic Change (in press).

    Google Scholar 

  • Keeling C D (1986) Atmospheric CO2 concentrations — Mauna Loa Observatory, Hawaii 1958–1986. NDP-001/R1 Carbon Dioxide Information Centre, Oak Ridge, Tennessee (regularly updated).

    Google Scholar 

  • Keeling C D, Piper S C, Heimann M (1989) A three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. In: Peterson D H (ed.), Aspects of climate variability in the Pacific and the western Americas. Geophysical Monograph 55: 305–363, American Geophysical Union.

    Google Scholar 

  • Lieth H (1975) Modeling the primary productivity of the world. In: Lieth, Whittaker (eds.) Primary productivity of the biosphere, Ecological Studies 14: 237–283, Springer-Verlag, New York, Heidelberg, Berlin.

    Chapter  Google Scholar 

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model. Climate Dynamics 2: 63–90.

    Article  Google Scholar 

  • Marland G, Rotty R M (1983) Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950–1981. Report DOE/NBB-0036 for U.S. Dept, of Energy.

    Google Scholar 

  • Oeschger H, Siegenthaler U, Schotterer U, Gugelmann A (1975) A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27: 168–192.

    Article  Google Scholar 

  • Osmond C B, Winter K, Ziegler H (1981) Functional significance of different pathways of CO2 fixation in photosynthesis. In: Encyclopedia of Plant Physiology. New Series, Vol. 12B, Pison A, Zimmermann M H (eds.) pp 480–547, Springer Berlin Heidelberg.

    Google Scholar 

  • Prentice C I, Cramer W, Harrison S P, Leemans R, Monserud R A, Solomon A M (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Submitted to Journal of Vegetation Science.

    Google Scholar 

  • Richards J F, Olson J S, Rotty R M (1983) Development of a data base for carbon dioxide releases resulting from conversion of land to agricultural uses. Institute for Energy Analysis, Oak Ridge Ass. Universities, ORAU/IEA-82–10(M); ORNL/TM-8801.

    Google Scholar 

  • Spitzy A, Leenheer J (1991) Dissolved organic carbon in rivers. In: Degens E T, Kempe S, Richey J E (eds.) Biogeochemistry of major world rivers, SCOPE 42: 213–232, Wiley & Sons Chichester.

    Google Scholar 

  • Tans P P, Fung I Y, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247: 1431–1438.

    Article  Google Scholar 

  • Umweltbundesamt (UBA) (1988) Materialien zum vierten Immissionsschutzbericht der Bundesregierung. Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esser, G. (1993). Carbon Exchange Between the Terrestrial Biosphere and the Atmosphere. In: Heimann, M. (eds) The Global Carbon Cycle. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84608-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84608-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84610-6

  • Online ISBN: 978-3-642-84608-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics