Advertisement

Methane Sinks Distribution

  • M. A. K. Khalil
  • M. J. Shearer
  • R. A. Rasmussen
Part of the NATO ASI Series book series (volume 13)

Abstract

At present the amount of methane removed from the atmosphere each year is about 500 Tg/yr or more than 90% of that released into the atmosphere each year. Most of the methane is removed by reacting with tropospheric OH radicals; lesser amounts are removed by soils and stratospheric oxidation by OH, O(1D), and minor reactions. This chapter is on the removal rate of CH4 and its variability in space and time.

Keywords

Removal Rate Middle Atmosphere Destruction Rate Atmospheric Methane Methane Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, K.B., R.C. Harriss. 1993. Review and assessment of methane emissions from wetlands. Chemosphere, 26: 261–320.CrossRefGoogle Scholar
  2. Brasseur, G., M.H. Hitchman, S. Walters, M. Dymek, E. Falise, M. Pirre. 1990. An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere. J. Geophys. Res., 95 (D5):5, 639–5, 655.CrossRefGoogle Scholar
  3. Bush, Y.A., A.L. Schmeltekopf, F.C. Fehsenfeld, D.L. Albritton, J.R. McAfee, P.D. Goldan, E.E. Ferguson. 1978. Stratospheric measurements of methane at several latitudes. Geophys. Res. Lett., 5:, 1027–1, 029.CrossRefGoogle Scholar
  4. Crutzen, P.J., U. Schmailzl. 1983. Chemical budgets of the stratosphere. Planet. Space Sci., 31 (9):1, 009–1, 032.CrossRefGoogle Scholar
  5. DeMore, W.B., S.P. Sander, C.J. Howard, A.R. Ravishankara, D.M. Golden, C.E. Kolb, R.F. Hampson, M.J. Kurylo, M.J. Molina. 1992. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. NASA Evaluation No. 10.Google Scholar
  6. Ehhalt, D.H., L.E. Heidt, E.A. Martell. 1972. The concentrations of atmospheric methane between 44 and 62 kilometers altitude. J. Geophys. Res., 77: 2, 1932, 196.Google Scholar
  7. Fabian, P., R. Borchers, G. Flentje, W.A. Matthews, W. Seiler, H. Giehl, K. Bunse, F. Müller, U. Schmidt, A. Volz, A. Khedim, F.J. Johnen. 1981. The vertical distribution of stable trace gases at mid-latitudes. J. Geophys. Res., 86 (C6):5, 179–5, 184.CrossRefGoogle Scholar
  8. Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P.J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96 (D7):13, 033–13, 065.CrossRefGoogle Scholar
  9. Gunson, M.R., C.B. Farmer, R.H. Norton, R. Zander, C.P. Rinsland, J.H. Shaw, B.-C. Gao. 1990. Measurements of CH4, N2O, CO, H2O, and 03 in the middle atmosphere by the Atmospheric Trace Molecule SpectroscopyGoogle Scholar
  10. Experiment on Spacelab 3. J. Geophys. Res., 95 (D9):13,867–13,882.Google Scholar
  11. Hahn, C.J., S.G. Warren, J. London, R.L. Jenne, R.M. Chervin. 1987. Climatological Data for Clouds over the Globe from Surface Observations. Report NDP-026, Carbon Dioxide Information Center, Oak Ridge, TN.Google Scholar
  12. Jones, R.L., J.A. Pyle. 1984. Observations of CH4 and N2O by the NIMBUS 7 SAMS: a comparison with in situ data and two-dimensional numerical model calculations. J. Geophys. Res., 89 (D4):5, 263–5, 279.CrossRefGoogle Scholar
  13. Khalil, M.A.K., R.A. Rasmussen. 1983. Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res., 88 (C9):5, 131–5, 144.CrossRefGoogle Scholar
  14. Khalil, M.A.K., R.A. Rasmussen. 1985. Causes of increasing atmospheric methane: depletion of hydroxyl radicals and the rise of emissions. Atmos. Environ., 19:397–407.CrossRefGoogle Scholar
  15. Khalil, M.A.K., R.A. Rasmussen. 1990. Atmospheric methane: recent global trends. Environ. Sci. Technol., 24: 549–553.CrossRefGoogle Scholar
  16. Khalil, M.A.K., R.A. Rasmussen. 1992. Forest hydrocarbon emissions: relationships between fluxes and ambient concentrations. J. Air & Waste Manage. Assoc., 42: 810–813.Google Scholar
  17. Khalil, M.A.K., R.A. Rasmussen. 1993. Decreasing trend of methane: unpredictability of future concentrations. Chemosphere, 26: 803–814.CrossRefGoogle Scholar
  18. Lelieveld, J., P.J. Crutzen, C. Brühl. 1993. Climate effects of atmospheric methane. Chemosphere, 26: 739–768.CrossRefGoogle Scholar
  19. Levine, J.S., C.P. Rinsland, G.M. Tennille. 1985. The photochemistry of methane and carbon monoxide in the troposphere in 1950 and 1985. Nature, 318: 254–257.CrossRefGoogle Scholar
  20. Lu, Y. 1993. Model calculations of radiative transfer and tropospheric chemistry. Ph.D. dissertation, Oregon Graduate Institute, Beaverton, OR.Google Scholar
  21. Lu, Y., M.A.K. Khalil. 1991. Tropospheric OH: model calculations of spatial, temporal, and secular variations. Chemosphere, 23: 397–444.CrossRefGoogle Scholar
  22. Lu, Y., M.A.K. Khalil. 1992. Model calculation of night-time atmospheric OH. Tellus, 44B:106–113.CrossRefGoogle Scholar
  23. Madronich, S., C. Granier. 1992. Impact of recent total ozone changes on tropospheric ozone photodissociation, hydroxyl radicals and methane trends. Geophys. Res. Lett., 19: 465–467.CrossRefGoogle Scholar
  24. Matthews, E. 1983. Global vegetation and land use: new high-resolution data bases for climate studies. J. Climate Appl. Met., 22: 474–487.CrossRefGoogle Scholar
  25. Matthews, E. 1984. Vegetation, land-use and seasonal albedo data sets: documentation of archived data tape. NASA Technical Memorandum 86107, Goddard Space Flight Center, New York, U.S.A.Google Scholar
  26. NOAA/CMDL (National Oceanic and Atmospheric Administration, Climate Monitoring and Diagnostics Laboratory Flask Sampling Program). 1990. In: Trends ‘80, A Compendium of Data on Global Change (T.A. Boden, P. Kanciruk, and M.P. Farrell, eds.), 148–189. Carbon Dioxide Information Analysis Center, Oak Ridge, TN, USA, ORNLJCDIAC-36.Google Scholar
  27. Ojima, D.S., D.W. Valentine, A.R. Mosier, W.J. Parton, D.S. Schimel. 1993. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere, 26 (1–4): 675–685.CrossRefGoogle Scholar
  28. Pinto, J., M.A.K. Khalil. 1991. The stability of tropospheric OH during ice ages, inter-glacial epochs and modern times. Tellus, 43B: 347–352.CrossRefGoogle Scholar
  29. Prather, M., C.M. Spivakovsky. 1990. Tropospheric OH and the lifetimes of hydrochlorofluorocarbons. J. Geophys. Res., 95 (D11):18, 723–18, 729.CrossRefGoogle Scholar
  30. Rasmussen, R.A., M.A.K. Khalil. 1986. Atmospheric trace gases: trends and distributions over the last decade. Science, 232: 1623–1624.PubMedCrossRefGoogle Scholar
  31. Schmidt, U., A. Khedim, D. Knapsa, G. Kulessa, F.J. Johnen. 1984. Stratospheric trace gas distributions observed in different seasons. Adv. Space Res., 4 (4): 131–134.CrossRefGoogle Scholar
  32. Schmidt, U., G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, and R. Borchers. 1987. Intercomparison of balloon-borne cryogenic whole air samplers during the MAP/GLOBUS 1983 campaign. Planet. Space Sci., 35: 647–656.CrossRefGoogle Scholar
  33. Spivakovsky, C.M., R. Yevich, J.A. Logan, S.C. Wofsy, M.B. McElroy, M.J. Prather. 1990. Tropospheric OH in a three-dimensional chemical tracer model: an assessment based on observations of CH3CC13. J. Geophys. Res., 95 (D11):18, 441–18, 471.CrossRefGoogle Scholar
  34. Steele, L.P., P.J. Fraser, R.A. Rasmussen, M.A.K. Khalil, T.J. Conway, A.J. Crawford, R.H. Gammon, K.A. Masarie, K.W. Thoning. 1987. The global distribution of methane in the troposphere. J. Atmos. Chem., 5: 125–171.CrossRefGoogle Scholar
  35. Steudler, P.A., R.D. Bowden, J.M. Melilo, J.D. Aber. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 341: 314–316.CrossRefGoogle Scholar
  36. Taylor, F.W. A. Dudhia, C.D. Rodgers. 1989. Proposed reference models for nitrous oxide and methane in the middle atmosphere. In: Handbook for MAP, Vol. 31. (G.M. Keating, ed.), 67–79.Google Scholar
  37. Thompson, A.M., R.J. Cicerone. 1986. Possible perturbations to atmospheric CO, CH4, and OH. J. Geophys. Res., 91 (D10):10, 853–10, 864.CrossRefGoogle Scholar
  38. Thompson, A.M. 1992. The oxidizing capacity of the Earth’s atmosphere: probable past and future changes. Science, 256:1, 157–1, 165.Google Scholar
  39. Vaghjiani, G.L., A.R. Ravishankara. 1991. New measurement of the rate coefficient for the reaction of OH with methane. Nature, 350: 406–408.CrossRefGoogle Scholar
  40. Warneck, P. 1988. Chemistry of the Natural Atmosphere. Vol. 41, International Geophysics Series, Academic Press, Inc., San Diego, CA, USA.CrossRefGoogle Scholar
  41. Weisenstein, D.K., M.K.W. Ko, N.-D. Sze. 1992. The chlorine budget of the present-day atmosphere: a modeling study. J. Geophys. Res., 97 (D2):2, 547–2, 559.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. A. K. Khalil
    • 1
  • M. J. Shearer
    • 1
  • R. A. Rasmussen
    • 1
  1. 1.Global Change Research Center Department of Environmental Science and Engineering Oregon Graduate InstitutePortlandUSA

Personalised recommendations