Advertisement

Atmospheric Methane Concentrations

  • B. Stauffer
  • M. Wahlen
  • F. Moraes
Conference paper
Part of the NATO ASI Series book series (volume 13)

Abstract

It was first discovered that the atmospheric concentration of methane was increasing based upon samples collected in the late seventies and early eighties at Cape Meares, Oregon (Rasmussen and Khalil, 1981). Since that time, more detailed and extensive data sets have allowed estimation of sources and sinks of methane on the global scale. As attempts are made to refine these estimates, the value of the current databases will be greatly increased, as will the need for more current data.

Keywords

Methane Concentration Carbon Isotopic Composition Atmospheric Methane Methane Source Methane Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blake, D.R., F.S. Rowland. 1988. Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 239: 1129–1131.PubMedCrossRefGoogle Scholar
  2. Burke, R.A., T.R. Barber, W.M. Sackett. 1988. Methane flux and stable hydrogen and carbon composition of sedimentary methane from the Florida Everglades. Global Biogeochemical Cycles, 2: 329–340.CrossRefGoogle Scholar
  3. Cantrell, C.A., R.E. Shetter, A.H. McDaniel, J.G. Calvert, J.A. Davidson, D.C. Lowe, S.C. Tyler, R.J. Cicerone, J.P. Greenberg. 1990. Carbon kinetic isotope effect in the oxidation of methane by hydroxyl radicals. J. Geophys. Res., 95: 22455–22462.CrossRefGoogle Scholar
  4. Craig, H., C.C. Chou, J.A. Welhan, C.M. Stevens, A. Engelkemeir. 1988. The isotopic composition of methane in polar ice cores. Science, 242: 1535–1538.PubMedCrossRefGoogle Scholar
  5. Ehhalt, D.H., A. Volz. 1976. Coupling of the CH4 with the H2 and CO cycle: Isotopic evidence. In: Microbial production and utilization of gases. Akademie der Wissenschaften zu Goettingen, FRG, 23–33Google Scholar
  6. Etheridge, D.M., G.I. Pearman, P.F. Fraser. 1993. Changes of tropospheric methane between 1841 and 1978 from a high accumulation-rate antarctic ice core. Tellus (in press).Google Scholar
  7. Fuchs, A., J. Schwander, B. Stauffer. 1993. A new ice mill allows precise concentration-determination of methane and most probably also other trace gases in the bubble-air of very small ice samples. Journal of Glaciology (in press).Google Scholar
  8. Khalil, M.A.K., R.A. Rasmussen. 1990. Atmospheric methane: Recent global trends. Environ. Sci. Technol., 24: 549–553.CrossRefGoogle Scholar
  9. Khalil, M.A.K., R.A. Rasmussen. 1993. Decreasing trend of methane: Unpredictability of future concentrations. Chemosphere, 26 (1–4): 803–814.CrossRefGoogle Scholar
  10. Khalil, M.A.K., R.A. Rasmussen, M.J. Shearer. 1989. Trends of Atmospheric Methane During the 1960s and 1970s. J. Geophys. Res., 94: 18279–18288.CrossRefGoogle Scholar
  11. King, S.L., P.D. Quay, J.M. Lansdown. 1989. The 13C/ 2C Kinetic Isotope Effect for Soil Oxidation of Methane at Ambient Atmospheric Concentrations. J. Geophys. Res., 94: 18273–18277.CrossRefGoogle Scholar
  12. Lassey, K.R., D.C. Lowe, C.A.M. Brenninkmeijer, A.J. Gomez. 1993. Atmospheric methane and its carbon isotopes in the southern hemisphere: Their time series and an instructive model. Chemosphere, 26 (1–4): 95–110.CrossRefGoogle Scholar
  13. Levin, I., R. Boesinger, G. Bonani, R. Francey, B. Kromer, K.O. Muennich, M. Suter, N.A.B. Trivett, W. Woelfli. 1991. Radiocarbon in atmospheric carbon dioxide and methane: Global distributions and trends. In: Radiocarbon after four decades: An interdisciplinary perspective ( R.E. Taylor, A. Long, and R.S. Kra, eds.), Springer Verlag, New York, pp. 506–518.Google Scholar
  14. Levin, I., P. Bergamaschi, H. Doerr, D. Trapp. 1993. Stable isotope signature of methane from different sources in western Europe. Chemosphere, 26 (1–4): 161–174.CrossRefGoogle Scholar
  15. Manning, M.R., D.C. Lowe, W.H. Melhuish, R.J. Sparks, G. Wallace, C.A.M. Brenningkmeijr, R.C. McGill. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon, 32/1: 37–58.Google Scholar
  16. Quay, P.D., S.L. King, J. Stutsman, D.O. Wilbur, L.P. Steele, I. Fung, R.H. Gammon, T.A. Brown, G.W. Farwell, P.M. Grootes and F.H. Schmidt. 1991. Carbon isotopic composition of atmospheric CH4: Fossil and biomass burning source strength. Global Biogeochemical Cycles, 5 /1: 25–45.CrossRefGoogle Scholar
  17. Rasmussen, R.A., M.A.K. Khalil. 1981. Atmospheric methane (CH4): Trends and seasonal cycles. J. Geophys. Res., 86: 883–886.CrossRefGoogle Scholar
  18. Rasmussen, R.A., M.A.K. Khalil. 1984. Atmospheric Methane in the Recent and Ancient Atmospheres: Concentrations, Trends, and Interhemispheric Gradient. J. Geophys. Res., 89: 11599–11605.CrossRefGoogle Scholar
  19. Rasmussen, R.A., M.A.K. Khalil, S.T. Hoyt. 1982. Methane and Carbon monoxide in snow. J. Air Pollut. Control Assn., 32: 176–177.Google Scholar
  20. Robbins, R.C., L.A. Cavanagh, L.J. Salas, E. Robinson. 1973. Analysis of ancient atmosphere. J. Geophys. Res., 78: 5341–5344.CrossRefGoogle Scholar
  21. Rust, F.E. 1981. Delta 13C of ruminant methane and its relationship to atmospheric methane. Science, 211: 1044–1046.PubMedCrossRefGoogle Scholar
  22. Schoell, M. 1980. The hydrogen and carbon isotopic composition from natural gases of various origin. Geochim. Cosmochim. Acta, 44: 649–661.CrossRefGoogle Scholar
  23. Schupp, M., P. Bergamaschi, G.W. Harris, P.J. Crutzen. 1992. Measurement of the 13C/12C ratio in methane by tunable diode laser spectroscopy. Chemosphere, 26 (1–4): 13–22.Google Scholar
  24. Sigg, A. 1990. Wasserstoffperoxid-Messungen an Eisbohrkernen aus Grönland and der Antarktis and ihre atmosphärenchemische Bedeutung. Ph.D. Dissertation, University Bern, Switzerland.Google Scholar
  25. Staffelbach, T., A. Neftel, B. Stauffer, D. Jacob. 1991. A record of atmospheric methane: sink from formaldehyde in polar ice cores. Nature, 349: 603–605.CrossRefGoogle Scholar
  26. Stauffer, B., E. Lochbronner, H. Oeschger, J. Schwander. 1988. Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene. Nature, 332: 812–814.CrossRefGoogle Scholar
  27. Steele, L.P., P.J. Fraser, R.A. Rasmussen, M.A.K. Khalil, T.J. Conway, A.J. Crawford, R H Gammon, K.A. Masarie, K.W. Thoning. 1987. The Global Distribution of Methane in the Troposphere. J. Atmos. Chem., 5: 125–171.CrossRefGoogle Scholar
  28. Steele, L.P., E.J. Dlugokencky, P.M. Lang, P.P. Tans, R.C. Martin, K.A. Masarie. 1992. Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature, 358: 313–316.CrossRefGoogle Scholar
  29. Stevens, C.M., F.E. Rust. 1982. The carbon isotopic composition of atmospheric methane. J. Geophys. Res., 87: 4879–4882.CrossRefGoogle Scholar
  30. Stevens, C.M., A. Engelkemeir. 1988. The carbon isotopic composition of methane from some natural and anthropogenic sources. J. Geophys. Res., 93: 725–733.CrossRefGoogle Scholar
  31. Thom, M., R. Boesinger, M. Schmidt, I. Levin. 1993. The regional budget of atmospheric methane in a highly populated area. Chemosphere, 26 (1–4): 143–160.CrossRefGoogle Scholar
  32. Tyler, S.C. 1986. Stable carbon isotope ratios in atmospheric methane and some of its sources. J. Geophys. Res., 91: 13232–13238.CrossRefGoogle Scholar
  33. Wahlen, M., N. Tanaka, R. Henry, B. Deck, W. Broecker, A. Shemesh, R. Fairbanks, J.S. Vogel, J. Southon. 1987. 13C, D and 14C in methane. In: Report to Congress and EPA on NASA Upper Atmosphere Research Program, NASA, Washington, D.C., 324–325.Google Scholar
  34. Wahlen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglen, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, W. Broecker. 1989a. Carbon-14 in methane sources and in the atmosphere: The contribution from fossil carbon. Science, 245: 286–290.PubMedCrossRefGoogle Scholar
  35. Wahlen, M., B. Deck, R. Henry, N. Tanaka, A. Shemesh, R. Fairbanks, W. Broecker and H. Weyer. 1989b. Profiles of 513C and SD in CH4 from the lower stratosphere. Trans. Am. Geophys. Union, 71 /43: 1249.Google Scholar
  36. Wahlen, M., N. Tanaka, B. Deck, R. Henry, A. Shemesh, R. Fairbanks, W. Broecker. 1990. SD in CH4: Additional constraints for a global CH4 budget. Trans. Am. Geophys. U., 71 /43: 1249.Google Scholar
  37. Whiticar, M.J., E. Faber, M. Schoell. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction versus acetate fermentation isotope evidence. Geochim. Cosmochim. Acta, 50: 693–709.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • B. Stauffer
    • 1
  • M. Wahlen
    • 2
  • F. Moraes
    • 3
  1. 1.Physikalisches InstitutUniversität BernBernSwitzerland
  2. 2.Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaUSA
  3. 3.Oregon Graduate InstituteGlobal Change Research CenterPortlandUSA

Personalised recommendations