Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 13))

Abstract

The ultimate goal of isotopic studies of atmospheric CH4 is to contribute to the understanding of the atmospheric CH4 cycle by determining the relative fluxes from various categories of sources and the causes of the increasing concentration (Stevens and Engelkemeir, 1988; Quay et al.,1988; Wahlen et al., 1989). Because the large number of generic anthropogenic source types makes it impossible to determine their relative strengths based on carbon-13 data alone, Stevens and Engelkemeir (1988) and Craig et al. (1988) used the isotopic data to calculate the flux of the source with the greatest uncertainty, namely biomass burning, making use of the estimated fluxes for the other sources from emission inventories. This method determined the flux and isotopic composition of the natural sources from the concentration and isotopic composition of CH4 in old polar ice cores assuming the same lifetime as now. The lifetime was mostly determined by the fluxes based on the emissions inventories. This approach does not use the lifetime as a constraint nor contribute to the knowledge of the major sources, which have significant uncertainties in the estimates based on emissions inventories. A better approach is to start with the constraint of the lifetime value based on the methyl chloroform cycle (see Mayer et al., 1982; Khalil and Rasmussen, 1983; Prinn et al., 1987; Cicerone and Oremland, 1988). Then it is possible to calculate the fluxes of the two most isotopically different sources, providing an estimate based on emissions inventories for one of the anthropogenic sources is used as a constraint. A source is chosen that introduces the least error, namely landfills, which is one of the smallest and has an isotopic composition closest to the average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bingemer, H.G., P.J. Crutzen. 1987. The production of methane from solid wastes. J. Geophys. Res., 92: 2181–2187.

    Article  CAS  Google Scholar 

  • Blake, D.R., F.S. Rowland. 1988. Continuing worldwide increase in tropospheric methane. Science, 239: 1129–1131.

    Article  PubMed  CAS  Google Scholar 

  • Burke, R.A., W.M. Sackett. 1986. Stable hydrogen and carbon isotopic compositions of biogenic methane from several shallow aquatic environments. In: Organic Marine Geochemistry (M.L. Sohn, ed.,) American Chemical Society, Washington, D.C., p. 297.

    Google Scholar 

  • Cantrell, C.A., R.E. Shetter, A.H. McDaniel, J.G. Calvert, J.A. Davidson, D.C. Lowe, S.C. Tyler, R.J. Cicerone, J.P. Greenberg. 1990. Carbon kinetic isotope effect in the oxidation of methane by hydroxyl radicals. J. Geophys. Res., 95: 22455–22462.

    Article  CAS  Google Scholar 

  • Chanton, J.P., C.S. Martens. 1988. Seasonal variations in ebullitive flux and carbon isotopic composition of methane in a tidal freshwater estuary. Global Biogeochem. Cycles, 2: 289.

    Article  CAS  Google Scholar 

  • Chanton, J.P., G.G. Pauly, C.S. Martens, N.E. Blair. 1988. Carbon isotopic composition of methane in Florida Everglades soils and fractionation during its transport to the troposphere. Global Biogeochem. Cycles, 2: 245.

    Article  Google Scholar 

  • Cicerone, R.J., R.S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, 2: 299–327.

    Article  CAS  Google Scholar 

  • Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3: 53–92.

    Article  CAS  Google Scholar 

  • Craig, H., C.C. Chou. 1982. Methane: The record in polar ice cores. Geophys. Res. Lett., 9: 1212–1224.

    Article  Google Scholar 

  • Craig, H., C.C. Chou, C.M. Stevens, A. Engelkemeir. 1988. Isotopic composition of methane in polar ice cores. Science, 242: 1535–1539.

    Article  PubMed  CAS  Google Scholar 

  • Crutzen, P.J., M.O. Andreae. 1990. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250: 1, 669.

    Article  Google Scholar 

  • Crutzen, P.J., I. Aselmann, W. Seiler. 1986. Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus, 38B: 271–284.

    Google Scholar 

  • Deines, P. 1980. The isotopic composition of reduced organic carbon. In: Handbook of Environmental Isotope Geochemistry, Vol. 1 (P. Fritz and J.C. Fontes, eds.), Elsevier Scientific, Chapter 9, p. 329–406.

    Google Scholar 

  • Friedli, H., H. Lotscher, H. Oeschger, U. Siegenthaler, B. Stauffer. 1986. Ice core record of the 13C/12C ratio of Atmospheric CO2 in the past two centuries. Nature, 324: 237.

    Article  CAS  Google Scholar 

  • Games, L.M., J.M. Hayes. 1976. On the mechanisms of CO2 and CH4 production in natural anaerobic environments. In: Proc. of the 2nd International Conference on Environmental Biogeochemistry, Vol. 1 ( J.O. Nriague, ed.), Butterworth, Stoneham, Mass., p 51.

    Google Scholar 

  • Gordon, S., W.A. Mulac. 1975. Reactions of the OH (X2II radical produced by the pulse radiolysis of water vapor. Int. J. Chem. Kinet., 7: 289.

    Article  Google Scholar 

  • Harriss, R.C. 1989. Historical trends in atmospheric methane concentration and the temperature sensitivity of methane outgassing from boreal and polar regions. In: Proceedings of a Joint Symposium by the Board on Atmospheric Sciences and Climate and the Committee on Global Change Commission on Physical Sciences, Mathematics and Resources. National Academic Press, Washington D.C., p. 79.

    Google Scholar 

  • Hitchcock, D.R., A.E. Wechsler. 1972. Biological cycling of atmospheric trace gases. Contr. Rep. NASA-CR 126663. Natl. Aeron. Space Adm., Washington D.C., p. 117.

    Google Scholar 

  • Holzapfel-Pschorn, A., W. Seiler. 1986. Methane during a cultivation period from an Italian rice paddy. J. Geophy. Res., 91: 1 1803.

    Google Scholar 

  • Hough, A., R.G. Derwent. 1990. Changes in the global concentration of tropospheric ozone due to human activities. Nature, 344:645.

    Article  CAS  Google Scholar 

  • Keeling, C.D., W.G. Mook, P.P. Tans. 1979. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature, 277: 121.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1983. Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res., 88: 5131–5144.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1990. Atmospheric methane: Recent global trends. Environ. Sci. Technol., 24: 549.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1991. Methane emissions from rice fields in China. Environ. Sci. TechnoL, 25: 979.

    Article  CAS  Google Scholar 

  • Lachenbruch, A.H., B.V. Marshall. 1986. Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic. Science, 234: 689.

    Article  PubMed  CAS  Google Scholar 

  • Lassey, K.R., D.C. Lowe, C.A.M. Brenninkmeijer, A.J. Gomez. 1993. Atmospheric methane and its carbon isotopes in the southern hemisphere: Their time series and an instructive model. Chemosphere, 26 (1–4): 95–110.

    Article  CAS  Google Scholar 

  • Levin, I., P. Bergamaschi, H. Dörr, D. Trapp. 1993. Stable isotopic signature of methane from different sources in western Europe. Chemosphere, 26 (1–4): 161–178.

    Article  CAS  Google Scholar 

  • Logan, J.A. 1985. Tropospheric ozone: Seasonal behavior, trends and anthropogenic influence. J. Geophys. Res., 90: 10463.

    Article  Google Scholar 

  • Lowe, D.C., C.A.M. Brenninkmeijer, S.C. Tyler, E.J. Dlugokencky. 1991. Determination of the isotopic composition of atmospheric methane and its application in the antarctic. J. Geophys. Res., 96: 15455–15467.

    Article  CAS  Google Scholar 

  • Matthews, E., I. Fung. 1987. Methane emissions from natural wetlands: Global distribution area, and environmental characteristics of sources. Global Biogeochem. Cycles, 1: 61.

    Article  CAS  Google Scholar 

  • Mayer, E.W., D.R. Blake, S.C. Tyler, Y. Makide, D.C. Montague, F.S. Rowland. 1982. Methane: interhemispheric concentration gradient and atmospheric residence time. Proc,. Natl. Acad. Sci., 79: 1366–1370.

    Article  CAS  Google Scholar 

  • Oona, S., E.S. Deevey. 1960. Carbon 13 in lake waters and its possible bearing on paleolimnology. Am. J. Sci., 258A: 253.

    Google Scholar 

  • Ovsyannikov, V.M., V.S. Lebedev. 1967. Isotopic composition of carbon in gases of biogenic origin. Geochem. Int., 4: 453.

    Google Scholar 

  • Prinn, R., D. Cunnold, R.A. Rasmussen, P. Simmonds, F. Alyea, A. Crawford, P. Fraser, R. Rosen. 1987. Atmospheric trends in methylchioroform and the global average for the hydroxyl radical. Science, 238: 945.

    Article  PubMed  CAS  Google Scholar 

  • Quay, P., S.L. King, J.M. Lansdown, D.O. Wilbur. 1988. Isotopic composition of methane released from wetlands: Implications for the increase in atmospheric methane. Global Biogeochem. Cycles, 2: 385.

    Article  CAS  Google Scholar 

  • Quay, P., S.L. King, J. Stutsman, D.O. Wilbur, L.P. Steele, I. Fung, R.H. Gammon, T.A. Brown, G.W. Farwell, P.M. Grootes, F.H. Schmidt. 1991. Carbon isotopic composition of atmospheric CH4: fossil and biomass burning source strengths. Global Biogeochem. Cycles, 5: 25.

    Article  CAS  Google Scholar 

  • Rice, D.D., G.E. Claypool. 1981. Generation, accumulation and resource potential of biogenic gas. Bull. Am. Assoc. Pet. Geol., 65: 5.

    CAS  Google Scholar 

  • Rust, F.E. 1981. Ruminant methane 5(13C/12C) values: Relationship to atmospheric methane. Science, 211: 1044–1046.

    Article  PubMed  CAS  Google Scholar 

  • Schoell, M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochem. Cosmochim. Acta, 44: 649.

    Article  CAS  Google Scholar 

  • Schütz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg, W. Seiler. 1989. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment om methane emission rates from an Italian rice paddy. J. Geophys. Res., 94: 16405.

    Article  Google Scholar 

  • Stevens, C. 1988. Atmospheric methane. Chem. Geol., 71: 11.

    Article  CAS  Google Scholar 

  • Stevens, C., A. Engelkemeir. 1988. Stable carbon isotopic composition of methane from some natural and anthropogenic sources. J. Geophys Res., 93: 725.

    Article  CAS  Google Scholar 

  • Stevens, C., A. Engelkemeir, R. Rasmussen. 1985. Causes of increasing methane fluxes based on carbon isotope studies. In: Special Environmental Report No. 16 (WMO-No.647); Lectures presented at the WMO Technical Conference on Observations and Measurement of Atmospheric Contaminants. World Meterol. Org., Geneva, Switzerland, p. 237.

    Google Scholar 

  • Tyler, S.C. 1986. Stable carbon isotope ratios in atmospheric methane and some of its sources. J. Geophys. Res., 91: 13232.

    Article  Google Scholar 

  • Tyler, S.C., P R Zimmerman, C. Cumberbatch, J. Greenberg, C. Westberg, J.P.E.C. Darlington. 1988. Measurements and interpretation of 813C of methane from termites, rice paddies, and wetlands in Kenya. Global Biogeochem. Cycles, 2: 341.

    Article  CAS  Google Scholar 

  • United Nations Statistical Yearbook. 1988.

    Google Scholar 

  • Wahlen, M., N. Tanaka, R. Henry, B. Deck, Zeglan, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, W. Broecker. 1989. Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon. Science, 245: 286.

    Article  PubMed  CAS  Google Scholar 

  • Wahlen, M., N. Tanaka, B. Deck, R. Henry. 1990. 8D in CH4: Additional constraints for a global budget. EOS, 71 (43): 1249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stevens, C.M. (1993). Isotopic Abundances in the Atmosphere and Sources. In: Khalil, M.A.K. (eds) Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84605-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84605-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84607-6

  • Online ISBN: 978-3-642-84605-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics