The Current and Future Environmental Role of Atmospheric Methane: Model Studies and Uncertainties

  • Joseph P. Pinto
  • Christoph H. Brühl
  • Anne M. Thompson
Part of the NATO ASI Series book series (volume 13)


Concern over increasing levels of methane in the atmosphere centers on its radiative and chemical properties. Methane absorbs terrestrial infrared radiation and contributes to the greenhouse effect. Effects on other greenhouse absorbers (e.g.,O3, H2O, and CO2) as the result of its oxidation must also be considered. These indirect effects have made the quantification of the total climatic effects of chemically active gases, such as CH4, much more difficult than if direct radiative effects are considered alone. The oxidation of methane also exerts a controlling influence on atmospheric OH levels and is a major source of carbon monoxide. The variations in OH induced by changing CH4 levels feed back onto the lifetime of methane and the abundance of CO (Sze, 1977; Chameides et al., 1977). However, there is a shortage of intercompared model results documenting the effects of CH4 and nonmethane hydrocarbon (NMHC) additions on tropospheric OH levels. Most analyses to date have relied on analyses of gas phase reaction sequences for methane oxidation (e.g., Crutzen, 1987, 1988), without considering the numerous feedbacks on atmospheric chemistry. More complete modeling studies are needed because OH levels also depend on the emissions of CO, NMHCs, and NOy (NOx + NO3 + 2N2O5 + CH3CO3NO2 (PAN) + HNO3 + HNO4 + ClNO3 + NO3 ), where NOx is NO + NO2 and NOy and NX are interchangeable terms. Furthermore, analyses which simulate the role of climate in controlling CH4 emissions from various natural sources (e.g., wetlands) are critical for attempting to predict the response of atmospheric methane levels to future climate change.


Methane Emission Last Glacial Maximum Tropospheric Ozone Methane Flux Atmospheric Methane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andronova, N.G., I.L. Karol. 1993. The contribution of USSR sources to the global methane emission. Chemosphere, 26 (1–4): 111–126.CrossRefGoogle Scholar
  2. Brühl, Ch. 1993. The impact of future scenarios for methane and other chemically active gases on the GWP of methane. Chemosphere, 26 (14): 731–738.CrossRefGoogle Scholar
  3. Butler, J.H., J.W. Elkins, T.M. Thompson, B.D. Hall, T.H. Swanson, and V. Koropalov. 1991. Oceanic consumption of CH3CCl3: Implications for tropospheric OH. J. Geophys. Res., 96: 22347–22356.CrossRefGoogle Scholar
  4. Chameides, W.L., S.C. Liu, R.J. Cicerone. 1977. Possible variations in atmospheric methane. J. Geophys. Res., 82: 1795–1798.CrossRefGoogle Scholar
  5. Chappellaz, J.A., I.Y. Fung, A.M. Thompson. 1993. Atmospheric methane increase since the Last Glacial Maximum. Tellus, 45B (in press).Google Scholar
  6. Crutzen, P.J. 1987. Role of the tropics in atmospheric chemistry. In: Geophysiology of Amazonia ( R. Dickinson, ed.), John Wiley and Sons, New York, New York.Google Scholar
  7. Crutzen, P.J. 1988. Tropospheric ozone: an overview. In: Tropospheric Ozone: Regional and Global Scale Interactions ( I.S.A. Isaksen, ed.), D. Reidel, Boston, MA.Google Scholar
  8. Dignon, J., J.E. Penner. 1991. Biomass burning: a source of nitrogen oxides in the atmosphere. In: Proceedings of the Chapman Conference on Biomass Burning ( J.S. Levine, ed.), MIT Press, Cambridge, MA.Google Scholar
  9. Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P.J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96: 13033–13065.CrossRefGoogle Scholar
  10. Guthrie, P.D. 1986. Biological methagonesis and the CO2 greenhouse effect. J. Geophys. Res., 91: 10847–10851.CrossRefGoogle Scholar
  11. Guthrie, P.D., G. Yarwood. 1991. Analysis of the Intergovernmental Panel on Climate Change (IPCC) future methane simulations, Rep. SYSAPP-91/114, Systems Applications International, San Rafael, CA.Google Scholar
  12. Hameed, S., R.D. Cess. 1983. Impact of a global warming on biospheric sources of methane and its climatic consequences. Tellus, 35B: 1–7.Google Scholar
  13. Hameed, S., J.P. Pinto, R.W. Stewart. 1979. Sensitivity of the predicted COOH-CH4 perturbation to tropospheric NOX concentrations. J. Geophys. Res., 84: 763–767.CrossRefGoogle Scholar
  14. Harriss, R.C., S.E. Frolking. 1991. The sensitivity of methane emissions from northern freshwater wetlands to global warming. In: Global Climate Change and Freshwater Ecosystems ( P. Firth and S.F. Fisher, eds.), Springer-Verlag, NY, p. 48–67.Google Scholar
  15. Hogan, K.B., J.S. Hoffman, A.M. Thompson. 1991. Methane on the Greenhouse agenda. Nature, 354: 181–182.CrossRefGoogle Scholar
  16. IPCC. 1990. Climate Change: The IPCC Assessment (J.T. Houghton, G.J. Jenkins, and J.J. Ephraums, eds.), Cambridge Univ. Press, Cambridge, UK.Google Scholar
  17. Kanakidou, M., H.B. Singh, K.M. Valentin, P.J. Crutzen. 1991. A two-dimensional study of ethane and propane oxidation in the troposphere. J. Geophys. Res., 96, 15, 395–15, 413.Google Scholar
  18. Kanakidou, M., P.J. Crutzen. 1993. Scale problems in global tropospheric chemistry modeling: Comparison of results obtained with a three-dimensional model, adopting longitudinally uniform and varying emissions of NOX and NMHC. Chemosphere, 26 (1–4): 787–802.CrossRefGoogle Scholar
  19. Khalil, M.A.K., R.A. Rasmussen. 1984. The atmospheric lifetime of methylchloroform (CH3CC13). Tellus, 36B: 317–322.Google Scholar
  20. Khalil, M.A.K., R.A. Rasmussen. 1990. Constraints on the global sources of methane and an analysis of recent budgets. Tellus, 42B: 229–236.CrossRefGoogle Scholar
  21. Lashof, D. 1989. The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases and climate change. Climatic Change, 14: 213–242.CrossRefGoogle Scholar
  22. Law, K.S., J.A. Pyle. 1991. Modeling the response of tropospheric trace species to changing source gas concentrations. Atmos. Environ., 25A: 1863–1871.CrossRefGoogle Scholar
  23. Lelieveld, J., P.J. Crutzen. 1990. Influences of cloud photochemical processes on tropospheric ozone. Nature, 343: 227–233.CrossRefGoogle Scholar
  24. Lelieveld, J., P.J. Crutzen, Ch. Brühl. 1993. Climate effects of atmospheric methane. Chemosphere, 26 (1–4): 739–768.CrossRefGoogle Scholar
  25. Livingston, G.P., L.A. Morrissey. 1992. Methane emissions from Alaska arctic tundra in response to climatic warming. Proceedings of the International Conference on the Role of the Polar Regions in Global Change (University of Alaska Press, Fairbanks) (in press).Google Scholar
  26. Liu, S.C., M. Trainer. 1988. Responses of the tropospheric ozone and odd hydrogen radicals to column ozone change. J. Atmos. Chem., 6: 221–234.CrossRefGoogle Scholar
  27. Logan, J.A., M.J. Prather, S.C. Wofsy, M.B. McElroy. 1981. Tropospheric chemistry: A global perspective. J. Geophys. Res., 86: 7210–7254.CrossRefGoogle Scholar
  28. Lu, Y., M.A.K. Khalil. 1991. Tropospheric OH: Model calculations of spatial, temporal, and secular variations. Chemosphere, 23: 397–444.CrossRefGoogle Scholar
  29. Maier-Reimer, E., K. Hasselmann. 1987. Transport and storage of CO2 in the ocean–an inorganic ocean-circulation carbon cycle model. Climate Dynamics, 2: 63–90.CrossRefGoogle Scholar
  30. Madronich, S. 1992. Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the Earth’s surface. Geophys. Res. Lett., 19: 37–40.CrossRefGoogle Scholar
  31. Mitchell, C. 1993. Methane emissions from fossil fuels–The need for independent verification. Chemosphere, 26 (1–4): 441–446.CrossRefGoogle Scholar
  32. NASA/Jet Propulsion Laboratory. 1990. Chemical Kinetics and Photochemical data for use in stratospheric modeling, NASA Kinetics Panel Evaluation No. 9, JPL Publ. 90–1.Google Scholar
  33. Pinto, J.P., M.A.K. Khalil. 1991. Stability of tropospheric OH levels during ice ages, interglacial epochs and modern times. Tellus, 43B: 347–352.CrossRefGoogle Scholar
  34. Prinn, R., D. Cunnold, R. Rasmussen, P. Simonds, F. Alyea, A. Crawford, P. Fraser, R. Rosen. 1987. Atmospheric trends in methyl chloroform and the global average for the hydroxyl radical. Science, 238: 946–950.CrossRefGoogle Scholar
  35. Prinn, R., D. Cunnold, P. Simmonds, F. Alyea, R. Boldi, A. Crawford, P. Fraser, D. Gutzler, D. Hartley, R. Rosen, R. Rasmussen. 1992. Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990. J. Geophys. Res., 97: 2445–2462.Google Scholar
  36. Rodhe, H. 1990. A comparison of the contribution of various gases to the greenhouse effect. Science, 248: 1217–1219.PubMedCrossRefGoogle Scholar
  37. Roulet, N.T., A. Jano, C.A. Kelly, L. Klinger, T.R. Moore, R. Protz, J.A. Ritter, and W.R. Rouse. 1993. The role of the Hudson Bay Lowland as a source of atmospheric methane. J. Geophys. Res. (in press).Google Scholar
  38. Sze, N.D. 1977. Anthropogenic CO emission: implications for atmospheric COOH-CH4 cycle. Science, 195: 673–675.PubMedCrossRefGoogle Scholar
  39. Thompson, A.M. 1991. New ozone hole phenomenon. Nature, 352: 282–283.CrossRefGoogle Scholar
  40. Thompson, A.M., R.W. Stewart. 1991. Effect of chemical kinetics uncertainties on calculated constituents in a tropospheric photochemical model. J. Geophys. Res., 96: 13089–13108.CrossRefGoogle Scholar
  41. Thompson, A.M., R.W. Stewart, M.A. Owens, J.A. Herwehe. 1989. Sensitivity of tropospheric oxidants to global chemical and climate change. Atmos. Environ., 23: 519–532.CrossRefGoogle Scholar
  42. Thompson, A.M., M.A. Huntley, R.W. Stewart. 1990. Perturbations to tropospheric oxidants, 1985–2035. 1. Calculations of ozone and OH in chemically coherent regions. J. Geophys. Res., 95: 9829–9844.CrossRefGoogle Scholar
  43. Thompson, A.M., J.A. Chappellaz, I.Y. Fung, T.L. Kucsera. 1993. Atmospheric Methane increase since the Last Glacial Maximum: 2. Effect on oxidants. Tellus, 45B (in press).Google Scholar
  44. Tie, X.X., E.J. Mroz. 1992. The potential changes of methane due to an assumed increased use of natural gas: A global three-dimensional model study. Chemosphere, 26 (1–4): 769–776.Google Scholar
  45. Valentin, K.M. 1990. Numerical modeling of the climatological and anthropogenic influences on the chemical composition of the troposphere since the Last Glacial Maximum, Ph.D. thesis, Johannes-Gutenburg-Univ. Mainz, Germany.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Joseph P. Pinto
    • 1
  • Christoph H. Brühl
    • 2
  • Anne M. Thompson
    • 3
  1. 1.US EPAUSA
  2. 2.Max Planck Institute for ChemisttyMainzGermany
  3. 3.NASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations