Measurement and Research Techniques

  • R. Conrad
  • R. A. Rasmussen
Conference paper
Part of the NATO ASI Series book series (volume 13)


The geographical distribution and increasing trend of trace gas concentrations in the global atmosphere are determined by a complex interplay of the geographical distribution of natural and human sources, biogeochemical and ecosystem dynamics, human agricultural and industrial practices, and atmospheric chemistry and dynamics. For an understanding of the global methane cycle, it is necessary to develop and apply methods that are suitable for measuring methane and its isotopes and that can be used for research on the many facets of the budget of atmospheric methane.


Methane Emission Methane Concentration Flux Measurement Source Strength Methane Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartlett, K.B., R.C. Harriss. 1993. Review and assessment of methane emissions from wetlands. Chemosphere, 26 (1–4): 261–320.Google Scholar
  2. Bartlett, D.S., K.B. Bartlett, J.M. Hartman, R.C. Harriss, D.I. Sebacher, R. Pelletier-Travis, D. D. Dow, D.P. Brannon. 1989. Methane emissions from the Florida Everglades: Patterns of variability in a regional wetland ecosystem. Global Biogeochem. Cycles, 3: 363–374.Google Scholar
  3. Bartlett, K.B., P.M. Crill, R.L. Sass, R.C. Harriss, N.B. Dise. 1992. Methane emissions from tundra environments in the Yukon-Kuskokwim delta, Alaska. J. Geophys. Res., 97: 16645–16600.Google Scholar
  4. Beljaars, A.C.M. 1982. The derivation of fluxes from profiles in perturbed areas. Boundary-Layer Meteorology, 24: 35–56.Google Scholar
  5. Born, M., H. Dörr, I. Levin. 1990. Methane consumption in aerated soils of the temperate zone. Tellus, 42B: 2–8.Google Scholar
  6. Borrell, P., P.M. Borrell, W. Seiler (eds.). 1991. Transport and Transformation of Pollutants in the Troposphere, SPB Academic Publishing, The Hague (The Netherlands), 586 pp.Google Scholar
  7. Broxmeyer, C. 1964. Inertial Navigation Systems, McGraw-Hill, New York, 254 pp.Google Scholar
  8. Burke, R.A., Jr., T.R. Barber, W.M. Sackett. 1988. Methane flux and stable hydrogen and carbon isotope composition of sedimentary methane from the Florida Everglades. Global Biogeochem. Cycles, 2: 329–340.Google Scholar
  9. Businger, J.A. 1986. Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J. Climate Appl. Meteorol., 25: 1100–1124.Google Scholar
  10. Businger, J.A., A.C. Delaney. 1990. Chemical sensor resolution required for measuring surface fluxes by three common micrometeorological techniques. J. Atmos. Chem., 10: 399–410.Google Scholar
  11. Businger, J.A., S.P. Oncley. 1990. Flux measurement with conditional sampling. J. Atmos. Ocean Techno L, 7: 349–352.Google Scholar
  12. Chanton, J.P., C.S. Martens, C.A. Kelley, P.M. Crill, W.J. Showers. 1992. Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake. J. Geophys. Res., 97: 16681–16688.Google Scholar
  13. Conrad, R. 1989. Control of methane production in terrestrial ecosystems. In: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere ( M.O. Andreae and D.S. Schimel, eds.), Dahlem Konferenzen, Wiley, Chichester, pp 39–58.Google Scholar
  14. Conrad, R., H. Schütz. 1988. Methods of studying methanogenic bacteria and methanogenic activities in aquatic environments. In: Methods in Aquatic Bacteriology (B. Austin, ed.), Wiley, Chichester, pp 301–343.Google Scholar
  15. Conrad, R., F. Rothfuss. 1991. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol. Fertil. Soils, 12: 28–32.Google Scholar
  16. Crill, P.M., K.B. Bartlett, J.O. Wilson, D.I. Sebacher, R.C. Harriss, J.M. Melack, S. Maclntyre, L. Lesack, L. Smith-Morrill. 1988. Tropospheric methane from an Amazonian floodplain lake. J. Geophys. Res., 93: 1564–1570.Google Scholar
  17. Delmas, R.A., J.P. Tathy, M. Labat, J. Servant, B. Cros. 1992. Sources and sinks of methane and carbon dioxide exchanges in mountain forest in equatorial Africa. J. Geophys. Res., 97: 6169–6179.Google Scholar
  18. Denmead, O.T. 1991. Sources and sinks of greenhouse gases in the soil-plant environment. Vegetatio, 91: 73–86.Google Scholar
  19. Desjardin, R.L. 1972. A study of carbon dioxide and latent heat fluxes using the eddy correlation technique. Ph.D. dissertation, Cornell University, NY.Google Scholar
  20. Desjardin, R.L. 1991. Review of techniques to measure CO2 flux densities from surface and airborne sensors. In: Advances in Bioclimatology ( G. Stanhill, ed.), Springer, Berlin, pp 1–41.Google Scholar
  21. Dörr, H., K.O. Münnich. 1990. 222Rn flux and soil air concentration profiles in West-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone. Tellus, 42B:20-28.Google Scholar
  22. Dörr, H., B. Kromer, I. Levin, K.O. Münnich, J.J. Volpp. 1983. CO2 and 222Radon as tracers for atmospheric transport. J. Geophys. Res., 88: 1309–1313.Google Scholar
  23. Dörr, H., L. Katruff, I. Levin. 1993. Soil texture parametrization of the methane uptake in aerated soils. Chemosphere, 26 (1–4): 697–714.Google Scholar
  24. Ehhalt, D. 1974. The atmospheric cycle of methane. Tellus, 26: 1–2.Google Scholar
  25. Fan, S.M., S.C. Wofsy, P.S. Bakwin, D.J. Jacob, S.M. Anderson, P.L. Kebabian, J.B. McManus, C.E. Kolb, D.R. Fitzjarrald. 1992. Micrometeorological measurements of CH4 and CO exchange between the atmosphere and the arctic tundra. J. Geophys. Res., 97: 16627–16643.Google Scholar
  26. Fowler, D., J.H. Duyzer. 1989. Micrometeorological techniques for the measurement of trace gas exchange. In: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Dahlem Konferenzen ( M.O. Andreae and D.S. Schimel, eds.), Wiley, Chichester, pp 189–207.Google Scholar
  27. Fraser, P.J., P. Hyson, R.A. Rasmussen, M.A.K. Khalil. 1986. Methane, carbon monoxide and methylchloroform in the southern hemisphere. J. Atmos. Chem., 4: 3–42.Google Scholar
  28. Frenzel, P., B. Thebrath, R. Conrad. 1990. Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). FEMS Microbiol. Ecol., 73: 149–158.Google Scholar
  29. Frenzel, P., F. Rothfuss, R. Conrad. 1992. Oxygen profiles and methane turnover in a flooded rice microcosm. Biol. Fertil. Soils., 14: 84–89.Google Scholar
  30. Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P.J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96: 13033–13065.Google Scholar
  31. Galchenko, V.F., A. Lein, M. Ivanov. 1989. Biological sinks of methane. In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere ( M.O. Andreae and D.S. Schimel, eds.), Dahlem Konferenzen, Wiley, Chichester, pp 59–71.Google Scholar
  32. Goodwin, D.C., U. Singh, R.J. Buresh, S.K. DeDatta. 1990. Modelling of nitrogen dynamics in relation to rice growth and yield. In: Proc. 14th Int. Congr. Soil Science, Kyoto, Japan, vol. 4, ISSS, Kyoto (Japan), pp 320–325.Google Scholar
  33. Hanson, R.S., E.V. Wattenberg. 1991. Ecology of methylotrophic bacteria. In: Biology of Methylotrophs, vol. 18 (I. Goldberg and J.S. Rokem, eds.), Butterworth-Heinemann, Stoneham, pp 325–348.Google Scholar
  34. Hanst, P.L. 1982. Air pollution measurements by Fourier transforms spectroscopy. Appl. Opt., 17: 1360.Google Scholar
  35. Hanst, P.L., A.S. Lefohn, B.W. Gay. 1973. Detection of atmospheric pollutants at parts-per-billion levels by infrared spectroscopy. Appl. Spectroscopy, 27: 188.Google Scholar
  36. Harriss, R.C. 1989. Experimental design for studying atmosphere-biosphere interactions. In: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere ( M.O. Andreae and D.S. Schimel, eds.), Dahlem Konferenzen, Wiley, Chichester, pp 291–301.Google Scholar
  37. Herget, W.F. 1982. Analysis of gaseous pollutants using a mobile FTIR system. Amer. Labs. 72.Google Scholar
  38. Holzapfel-Pschorn, A., R. Conrad, W. Seiler. 1985. Production, oxidation and emission of methane in rice paddies. FEMS Microbiol. Ecol., 31: 343–351.Google Scholar
  39. Holzapfel-Pschorn, A., R. Conrad, W. Seiler. 1986. Effects of vegetation on the emission of methane from submerged paddy soil. Plant and Soil, 92: 223–233.Google Scholar
  40. IRRI. 1978. Soils and Rice, International Rice Research Institute, Los Banos (Phillippines), 82 pp.Google Scholar
  41. IRRI. 1987. Physical Measurements in Flooded Rice Soils, International Rice Research Institute, Los Banos (Philippines), 65 pp.Google Scholar
  42. Kaye, J.A. 1987. Mechanisms and observations for isotope fractionations of molecular species in planetary atmospheres. Rev. Geophysics, 25: 1609–1658.Google Scholar
  43. Kayton, M., W.R. Fried. 1969. Avionics Navigation Systems, Wiley, New York, 666 pp.Google Scholar
  44. Khalil, M.A.K., R.A. Rasmussen. 1988. Trace gases over the western Atlantic Ocean: Fluxes from the eastern United States and distributions in and above the planetary boundary layer. Global Biogeochem. Cycles, 2: 63–71.Google Scholar
  45. King, G.M. 1990. Dynamics and controls of methane oxidation in a Danish wetland sediment. FEMS Microbiol. Ecol., 74: 309–323.Google Scholar
  46. Kirchgessner, D.A., S.D. Piccot, A. Chadha, T. Minnich. 1993. Estimation of methane emissions from a surface coal mine using open-path FTIR spectroscopy and modeling techniques. Chemosphere, 26 (1–4): 23–44.Google Scholar
  47. Lawson, R.P. 1980. On the airborne measurement of vertical air velocity. J. Appl. Meteorol., 19: 1416–1419.Google Scholar
  48. Lenschow, D.H. 1984. Instrumentation development needs for use of mass-balance technique. In: Global Tropospheric Chemistry: A Plan for Action, National Academy Press, Washington, D.C., pp 141–143.Google Scholar
  49. Lenschow, D.H. 1986. Aircraft measurements in the boundary layer. In: Probing the Atmospheric Boundary Layer (D.H. Lenschow, ed.), American Meteorol. Soc., Boston Mass., pp 39–55Google Scholar
  50. Lenschow, D.H., L. Kirstensen. 1985. Uncorrelated noise in turbulence measurements. J. Atmos. Ocean Technol., 2: 68–81.Google Scholar
  51. Lenschow, D.H., A.C. Delany, B.B. Stankov, D.H. Stedman. 1980. Airborne measurements of the vertical flux of ozone in the boundary layer. Boundary-Layer Meteorol, 19: 249–265.Google Scholar
  52. Lenschow, D.H., R. Pearson Jr., B.B. Stankov. 1982. Measurements of ozone vertical flux to ocean and forest. J. Geophys. Res., 87: 8833–8837.Google Scholar
  53. Levin, I. 1987. Atmospheric CO2 in continental Europe — an alternative approach to clean air data. Tellus, 39B: 21–28.Google Scholar
  54. Levin, I., J. Schuchard, B. Kromer, K.O. Münnich. 1989. The continental European Suess-effect. Radiocarbon, 31: 431–440.Google Scholar
  55. Levin, I., R. Bösinger, G. Bonani, R. Francey, B. Kromer, K.O. Münnich, M. Suter, N.B.A. Trivett, W. Wölfli. 1992. Radiocarbon in atmospheric carbon dioxide and methane: global distribution and trends. In: Radiocarbon After Four Decades: An Interdisciplinary Perspective ( R.E.T.A. Long and R.S. Kra, eds.), Springer, Berlin, pp 503–518.Google Scholar
  56. Levin, I., P. Bergamaschi, H. Dörr, D. Trapp. 1993. Stable isotopic signature of methane from major sources in Germany. Chemosphere, 26 (1–4): 161–178.Google Scholar
  57. Lowe, D.C., C.A.M. Brenninkmeijer, M.R. Manning, R. Sparks, G. Wallace. 1988. Radiocarbon determinations of atmospheric methane at Baring Head, New Zealand. Nature, 332: 522–525.Google Scholar
  58. Lowe, D.C., C.A.M. Brenninkmeijer, S.C. Tyler, E.J. Dlugkencky. 1991. Determination of the isotopic composition of atmospheric methane and its application in the Antarctic. J. Geophys. Res., 96: 15455–15467.Google Scholar
  59. MacPherson, J.I., R.L. Desjardin. 1991. Airborne tests of flux measurement by the relaxed eddy accumulation technique. In: Proc. 7th Symp. Met. Obs. Instrum., New Orleans, LA, pp 6–11.Google Scholar
  60. Martens, C.S., J.P. Chanton. 1989. Radon as a tracer of biogenic gas equilibration and transport from methane-saturated sediments. J. Geophys. Res., 94: 3451–3459.Google Scholar
  61. Martens, C.S., N.E. Blair, C.D. Green, D.J. DesMarais. 1986. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment. Science, 233:1,300–1,303.PubMedGoogle Scholar
  62. Mason, P.J. 1988. The formation of arealy-averaged roughness lengths. QJR Meteorol. Soc., 114: 399–420.Google Scholar
  63. Matson, P.A., P.M. Vitousek, D.S. Schimel. 1989. Regional extrapolation of trace gas flux based on soils and ecosystems. In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere ( M.O. Andreae and D.S. Schimel, eds.), Dahlem Konferenzen, Wiley, Chichester, pp 97–108.Google Scholar
  64. Monin, A.S., A.M. Yaglom. 1971. Statistical Fluid Mechanics: Mechanics of Turbulence, 3rd ed., vol. I, MIT Press, London.Google Scholar
  65. Moore, T., N. Roulet, R. Knowles. 1990. Spatial and temporal variations of methane flux from subarctic/northern boreal fens. Global Biogeochem. Cycles, 4: 29–46.Google Scholar
  66. Morrissey, L.A., G.P. Livingston. 1992. Methane Flux from tundra ecosystems in arctic Alaska: An assessment of local spatial variability. J. Geophys. Res., 97: 16661–16670.Google Scholar
  67. Mosier, A., D. Schimel, D. Valentine, K. Bronson, W. Parton. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 350: 330–332.Google Scholar
  68. Mroz, E.J. 1993. Deuteromethanes: potential fingerprints of the sources of atmospheric methane. Chemosphere, 26 (1–4): 45–54.Google Scholar
  69. Murrell, J.C., V. McGowan, D.L.N. Cardy. 1993. Detection of methylotrophic bacteria in natural samples by molecular probing techniques. Chemosphere, 26 (1–4): 1–12.Google Scholar
  70. Prather, M., M.B. McElroy, S. Wofsy, G. Russell, D. Rind. 1987. Chemistry of the global troposphere: Fluorocarbons as tracers of air motion. J. Geophys. Res., 92: 6579–6613.Google Scholar
  71. Quay, P. D., S.L. King, J. Stutsman, D.O. Wilbur, L.P. Steele, I. Fung, R.H. Gammon, T.A. Brown, G.W. Farwell, P.M. Grootes, F.H. Schmidt. 1991. Carbon isotopic composition of atmospheric CH4: fossil and biomass burning source strengths. Global Biogeochem. Cycles, 5: 25–47.Google Scholar
  72. Ritter, J.A., D.H. Lenschow, J.D.W. Barrick, G.L. Gregory, G.W. Sachse, G.F. Hill, M.A. Woerner. 1990. Airborne flux measurements and budget estimates of trace species over the Amazon Basin during the GTE/ABLE 2B expedition. J. Geophys. Res., 95: 16875–16886.Google Scholar
  73. Ritter, J.A., C. Watson, J. Barrick, G. Sachse, J. Collins, G. Gregory, B. Anderson, M. Woerner. 1991. Airborne boundary-layer measurements of heat, moisture, CH4, CO, and O3 fluxes over Canadian boreal forest and northern wetland regions. EOS, 72: 85.Google Scholar
  74. Ritter, J.A., J.D.W. Barrick, G.W. Sachse, G.L. Gregory, M.A. Woerner, C.E. Watson, G.F. Hill, J.E. Collins. 1992. Airborne flux measurements of trace species in an arctic boundary layer. J. Geophys. Res., 97: 16601–16625.Google Scholar
  75. Rosswall, T., F. Bak, D. Baldocchi, R.J. Cicerone, R. Conrad, D.H. Ehhalt, M.M.K. Firestone, I.E. Galbally, V.F. Galchenko, P.M. Groffman, H. Papen, W.S. Reeburgh, E. Sanhueza. 1989. What regulates production and consumption of trace gases in ecosystems: Biology or physicochemistry? In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere ( M.O. Andreae and D.S. Schimel, eds.), Dahlem Konferenzen, Wiley, Chichester, pp 73–95.Google Scholar
  76. Roulet, N.T., R. Ash, T.R. Moore. 1992. Low boreal wetlands as a source of atmopsheric methane. J. Geophys. Res., 97: 3739–3749.Google Scholar
  77. Sachse, G.W., G.F. Hill, L.O. Wade, M.G. Perry. 1987. Fast response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique. J. Geophys. Res., 92: 2071–2081.Google Scholar
  78. Schmid, H.P., T.R. Oke. 1990. A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. QJR Meteorol. Soc., 116: 965–988.Google Scholar
  79. Schoell, M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta, 44: 649–661.Google Scholar
  80. Schupp, M., P. Bergamaschi, G.W. Harris, P.J. Crutzen. 1993. Development of a tunable diode laser absorption spectrometer for measurements of the 13C/12C ratio in methane. Chemosphere, 26 (1–4): 13–22.Google Scholar
  81. Schütz, H., W. Seiler. 1989. Methane flux measurements: methods and results. In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere ( M.O. Andreae and D.S. Schimel, eds.), Dahlem Konferenzen, Wiley, Chichester, pp 209–228.Google Scholar
  82. Schütz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg, W. Seiler. 1989a. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res., 94: 16405–16416.Google Scholar
  83. Schütz, H., W. Seiler, R. Conrad. 1989b. Processes involved in formation and emission of methane in rice paddies. Biogeochem., 7: 33–53.Google Scholar
  84. Schütz, H., W. Seiler, R. Conrad. 1990. Influence of soil temperature on methane emission from rice paddy fields. Biogeochem., 11: 77–95.Google Scholar
  85. Spivakovsky, C.M., R. Yevich, J.A. Logan, S.C. Wofsy, M.B. McElroy, M.J. Prather. 1990. Troposheric OH in a three dimensional chemical tracer model: An assessment based on observations of CH3CC13. J. Geophys. Res., 95: 18441–18471.Google Scholar
  86. Stainthorpe, A.C., G.P.C. Salmond, H. Dalton, J.C. Murrell. 1990. Screening of obligate methanotrophs for soluble methane monooxygenase genes. FEMS Microbiol Lett., 70: 211–216.Google Scholar
  87. Steudler, P.A., R.D. Bowden, J.M. Melillo, J.D. Aber. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 341: 314–316.Google Scholar
  88. Stevens, C.M., R.E. Rust. 1982. The carbon isotopic composition of atmospheric methane. J. Geophys. Res., 87: 725–733.Google Scholar
  89. Stewart, J.W.B., I. Aselmann, A.F. Bouwman, R.L. Desjardin, B.B. Hicks, P.A. Matson, H. Rodhe, D.S. Schimel, B.H. Svensson, R. Wassmann, M.J. Whiticar, M.X. Yang. 1989. Extrapolation of flux measurements to regional and global scales. In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere ( M.O. Andreae and D.S. Schimel, eds.), Dahlem Konferenzen, Wiley, Chichester, pp 155–174.Google Scholar
  90. Tennekes, H. 1982. Similarity relations, scaling laws and spectral dynamics. In: Atmospheric Turbulence and Air Pollution Modelling ( F.T.M. Nieuwstadt and H. van Dop, eds.), D. Reidel, Dordrecht (The Netherlands), pp 37–68.Google Scholar
  91. Thom, M., R. Bösinger, M. Schmidt, I. Levin. 1993. The regional budget of atmospheric methane of a highly populated area. Chemosphere, 26 (14): 143–160.Google Scholar
  92. Trumbore, S.E., M. Keller, S.C. Wofsy, J.M. daCosta. 1990. Measurement of soil and canopy exchange rates in the Amazon rain forest using 222Rn. J. Geophys. Res., 95: 16865–16873.Google Scholar
  93. Tsien, H.C., B.J. Bratine, K. Tsuji, R.S. Hanson. 1990. Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl. Environ Microbiol, 56: 2858–2865.PubMedGoogle Scholar
  94. Tyler, S.C. 1986. Stable carbon isotope ratios in atmospheric methane and some of its sources. J. Geophys. Res., 91: 13232–13238.Google Scholar
  95. Wahlen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglen, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, W. Broecker. 1989. Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon. Science, 245: 286–290.PubMedGoogle Scholar
  96. Webb, E.K., G.E. Pearman, R. Leuning. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. QJR Meteorol. Soc., 106: 85–100.Google Scholar
  97. Whalen, S.C., R.S. Reeburgh. 1988. A methane flux time series for tundra environments. Global Biogeochem. Cycles, 2: 399–409.Google Scholar
  98. Whalen, S.C., W.S. Reeburgh. 1992. Interannual variations in tundra methane emission: a four-year time series at fixed sites. Global Biogeochem Cycles, 6: 139–159.Google Scholar
  99. Whiticar, M.J., E. Faber. 1985. Methane oxidation in sediment and water column environments–isotope evidence. Adv. Org. Geochem., 10: 759–768.Google Scholar
  100. Whiticar, M.J., E. Faber, M. Schoell. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation–isotopic evidence. Geochim. Cosmochim. Acta, 50: 693–709.Google Scholar
  101. Whiticar, M.J., E. Faber, M. Schoell. 1990. A geochemical perspective of natural gas and atmospheric methane. Org. Geochem., 16: 531–547.Google Scholar
  102. Wieringa, J. 1976. An objective exposure correction method for average wind speeds measured at a sheltered location. QJR Meteorol. Soc., 102: 241–253.Google Scholar
  103. Wieringa, J. 1986. Roughness-dependent geographical interpolation of surface wind speed averages. QJR Meteorol. Soc., 112: 867–889.Google Scholar
  104. Wilson, J.O., P.M. Crill, B.B. Bartlett, D.L. Sebacher, R.C. Harriss, R.L. Sass. 1989. Seasonal variation of methane emissions from a temperate swamp. Biogeochem., 8: 55–71.Google Scholar
  105. Wofsy, S.C., R.C. Harriss, W.A. Kaplan. 1988. Carbon dioxide in the atmosphere over the Amazon Basin. J. Geophys. Res., 93: 1377–1387.Google Scholar
  106. Wyngaard, J.C. 1988a. Flow-distortion effects on scalar flux measurements in the surface layer: Implications for sensor design. Boundary-Layer Meteorol., 42: 19–26.Google Scholar
  107. Wyngaard, J.C. 1988b. The effects of probe-induced flow distortion on atmospheric turbulence measurements: Extension to scalars. J. Atmos. Sci., 22: 3400–3412.Google Scholar
  108. Wyngaard, J.C. 1990. Scalar fluxes in the planetary boundary layer–theory, modeling and measurement. Boundary-Layer Meteor., 50: 49–75.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • R. Conrad
    • 1
  • R. A. Rasmussen
    • 2
  1. 1.Max-Planck Institut für Terrestrische MikrobiologieMarburg/LahnGermany
  2. 2.Global Change Research CenterOregon Graduate InstitutePortlandUSA

Personalised recommendations