Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 13))

Abstract

Wetlands are most likely the largest natural source of methane to the atmosphere (Khalil and Rasmussen, 1983; Cicerone and Oremland, 1988; Fung et al., 1991), accounting for ~20% of the current global annual emission of ~450–550 Tg (1012 g). Measurements of methane from Greenland and Antarctic ice cores indicate atmospheric concentrations of ~350 ppbv during the Last Glacial Maximum rising to 650 ppbv during the pre-industrial Holocene (Stauffer et al., 1988; Chappellaz et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aselmann, I., P. Crutzen. 1989. Global distribution of natural freshwater wetlands and rice paddies: their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem., 8: 307–358.

    Article  CAS  Google Scholar 

  • Baker-Blocker, A., T.M. Donohue, K.H. Mancy. 1977. Methane flux from wetland areas. Tellus, 29: 245–250.

    Article  CAS  Google Scholar 

  • Barber, T.R., R.A. Burke, Jr., W.M. Sackett. 1988. Diffusive flux of methane from warm wetlands. Global Biogeochem. Cycles, 2: 411–425.

    Article  CAS  Google Scholar 

  • Bartlett, K.B., R.C. Harriss. 1993. Review and assessment of methane emissions from wetlands. Chemosphere, 26 (1–4): 261–320.

    Article  CAS  Google Scholar 

  • Bartlett, K.B., R.C. Harriss, D.I. Sebacher. 1985. Methane flux from coastal salt marshes. J. Geophys. Res., 90:5, 710–5, 720.

    Google Scholar 

  • Bartlett, K.B., P.M. Crill, D.I. Sebacher, R.C. Harriss, J.O. Wilson, J.M. Melack. 1988. Methane flux from the central Amazonian floodplain. J. Geophys. Res., 93:1, 571–1, 582.

    Google Scholar 

  • Bartlett, D.S., K.B. Bartlett, J.M. Hartman, R.C. Harriss, D.I. Sebacher, R. Pelletier-Travis, D.D. Dow, D.P. Brannon. 1989. Methane emissions from the Florida Everglades: Patterns of variability in a regional wetland ecosystem. Global Biogeochem. Cycles, 3: 363–374.

    Article  CAS  Google Scholar 

  • Bartlett, K.B., P.M. Crill, J.A. Bonassi, J.E. Richey, R.C. Harriss. 1990. Methane flux from the Amazon River floodplain: Emissions during rising water. J. Geophys. Res., 95:16, 773–16, 788.

    Google Scholar 

  • Bartlett, K.B., P.M. Crill, R.L. Sass, R.C. Harriss, N.B. Dise. 1992. Methane emissions from tundra environments in the Yukon-Kuskokwim Delta, Alaska. J. Geophys. Res., 97:16, 645–16, 660.

    Google Scholar 

  • Blake, D.S. 1984. Increasing concentrations of atmospheric methane. Ph.D. thesis, Univ. Cal. at Irvine, 213 p.

    Google Scholar 

  • Blake, D.R., F.S. Rowland. 1986. Worldwide increase in tropospheric methane, 1978 to 1983. J. Atmos. Chem., 4: 43–62.

    Article  CAS  Google Scholar 

  • Blake, D.R., F.S. Rowland. 1988. Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 239:1, 129–1, 131.

    Google Scholar 

  • Blake, D.R., E.W. Mayer, S.C. Tyler, Y. Makide, D.C. Montague, F.S. Rowland. 1988. Global increase in atmospheric methane concentrations between 1978 and 1980. Geophys. Res. Lett., 9: 477–480.

    Article  Google Scholar 

  • Burke, R.A., Jr., T.R. Barber, W.M. Sackett. 1988. Methane flux and stable hydrogen and carbon isotope composition of sedimentary methane from the Florida Everglades. Global Biogeochem. Cycles, 2: 329–340.

    Article  CAS  Google Scholar 

  • Chameides, W.L., C.S. Liu, R.J. Cicerone. 1977. Possible variations in atmospheric methane. J. Geophys. Res., 82:1, 795–1, 798.

    Google Scholar 

  • Chappellaz, J.A., J.M. Barnola, D. Raynaud, Y.S. Korotkevich, C. Lorius. 1990. Ice-core record of atmospheric methane over the past 160,000 years. Nature, 345: 127–131.

    Article  CAS  Google Scholar 

  • Chappellaz, J.A., I.Y. Fung, A.M. Thompson. 1993. The atmospheric CH4 increase since the Last Glacial Maximum, 1. Source estimates. Tellus, 45B (in press).

    Google Scholar 

  • Cicerone, R.J., J.D. Shetter. 1981. Sources of atmospheric methane: Measurements in rice paddies and a discussion. J. Geophys. Res., 86: 7, 2037, 209.

    Google Scholar 

  • Cicerone, R.J., R.S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299–327.

    Article  CAS  Google Scholar 

  • Craig, H., C.C. Chou. 1982. Methane: The record in polar ice cores. Geophys. Res. Lett., 9:1, 221–1, 224.

    Google Scholar 

  • Crill, P.M., K.B. Bartlett, R.C. Harriss, E. Gorham, E.S. Verry, D.I. Sebacher, L. Madzar, W. Sanner. 1988a. Methane flux from Minnesota peatlands. Global Biogeochem. Cycles, 2: 371–384.

    Article  CAS  Google Scholar 

  • Crill, P.M., K.B. Bartlett, J.O. Wilson, D.I.Sebacher, R.C. Harriss. 1988b. Tropospheric methane from an Amazonian floodplain lake. J. Geophys. Res., 93:1, 564–1, 570.

    Google Scholar 

  • Crutzen, P.J., L.T. Gidel. 1983. A two-dimensional photo-chemical model of the atmosphere 2: The tropospheric budgets of the anthropogenic chlorocarbons CO, CH4, CH3, Cl and the effect of various NOx sources on tropospheric ozone. J. Geophys. Res., 88:6, 641–6, 661.

    Google Scholar 

  • Dacey, J.W.H., M. Klug. 1979. Methane flux from lake sediments through water lilies. Science, 203:1, 253–1, 255.

    Google Scholar 

  • Deines, P. 1980. The isotopic composition of reduced organic carbon. In: Handbook of Environmental Isotope Chemistry, Vol. 1 ( P. Fritz and J. Fontes, eds.) Elsevier, New York, p. 329

    Google Scholar 

  • Delmas, R.A., J. Servant, J.-P. Tathy, B. Cros, M. Labat. 1992. Sources and sinks of methane and carbon dioxide exchanges in mountain forest in Equatorial Africa. J. Geophys. Res., 97:6, 169–6, 179.

    Google Scholar 

  • Devol, A.H., J.E. Richey, W.A. Clark, S.L. King. 1988. Methane emissions to the troposphere from the Amazon Floodplain. J. Geophys. Res., 93:1, 5831, 592.

    Google Scholar 

  • Devol, A.H., J.E. Richey, B.R. Forsberg, L.A. Martinelli. 1990. Seasonal dynamics of methane emissions from the Amazon River floodplain to the troposphere. J. Geophys. Res., 95:16, 417–16, 426.

    Google Scholar 

  • Dise, N.B. 1993. Factors affecting methane production under rice. Global Biogeochemical Cycles, 7 (1): 123–142.

    Article  Google Scholar 

  • Ehhalt, D.H. 1974. The atmospheric cycle of methane. Tellus, 26: 58–70.

    Article  CAS  Google Scholar 

  • Ehhalt, D.H., U. Schmidt 1978. Sources and sinks of atmospheric methane. Pageoph., 116: 452–464.

    Article  CAS  Google Scholar 

  • Ehhalt, D.H., R.J. Zander, R.A. Lamontagne. 1983. On the temporal increase of tropospheric CH4. J. Geophys. Res., 88:8, 442–8, 446.

    Google Scholar 

  • Fan, S.-M., S.C. Wofsy, P.S. Bakwin, D.J. Jacob, S.M. Anderson, P.L. Kebabian, J.B. McManus, C.E. Kolb, D.R. Fitzjarrald. 1992. Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and the Subarctic tundra. J. Geophys. Res., 97:16, 627–16, 643.

    Google Scholar 

  • Fontan, J., A. Druilhet, B. Benech, R. Lyra, B. Cros. 1992. The DECAFE experiments: Overview and meteorology. J. Geophys. Res., 97:6, 123–6, 136.

    Google Scholar 

  • Frolking, S. 1993. Methane from northern peatlands and climate change. In: Proceedings of Carbon Cycling in Boreal Forest and Sub Arctic Ecosystems 9–12 September 1991, Corvallis, Oregon (in press).

    Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P.J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96:13, 033–13, 065.

    Google Scholar 

  • Games, L.M., J.M. Hayes. 1976. On the mechanisms of CH4 and CO2 production in natural anaerobic environments. In: Proceedings of the 2nd International Symposium on Environmental Biogeochemistry ( J.O. Nraigue, ed.), Butterworth, Stoneham, MA, p 51.

    Google Scholar 

  • Glaser, P.H. 1987. The Ecology of Patterned Boreal Peatlands of Northern Minnesota: A community Profile, U.S. Fish and Wildlife Service Biological Report, 85(Z14). U.S. Department of the Interior, Washington D.C., 98 p.

    Google Scholar 

  • Gore, A.J.P. (ed.) 1983a. Ecosystems of the World, Mires: Swamp, Bog, Fen and Moor, General Studies, 4A. Elsevier, New York, 440 p.

    Google Scholar 

  • Gore, A.J.P. (ed.) 1983b. Ecosystems of the World, Mires: Swamp, Bog, Fen and Moor, Case Studies, 4B. Elsevier, New York, 479 p.

    Google Scholar 

  • Hamilton, J.D., C.A. Kelley, J.W.M. Rudd. 1991. Methane and carbon dioxide flux from ponds and lakes of the Hudson Bay Lowlands. EOS, 72: 84.

    Google Scholar 

  • Hansen, J., I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy, G. Russell, P. Stone. 1988. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res., 93:9, 341–9, 364.

    Google Scholar 

  • Harriss, R.C., D.I. Sebacher. 1981. Methane flux in forested freshwater swamps of the southeastern United States. Geophys. Res. Lett., 8:1, 002–1, 004.

    Google Scholar 

  • Harriss, R.C., S. Frolking. 1993. The sensitivity of methane emissions from northern freshwater wetlands to global warming. In: Climate Change and Freshwater Ecosystems ( P. Firth, S. Fisher, eds.), Springer-Verlag, New York, p. 48.

    Google Scholar 

  • Harriss, R.C., D.I. Sebacher, F.P. Day, Jr. 1982. Methane flux in the Great Dismal Swamp. Nature, 297: 673–674.

    Article  CAS  Google Scholar 

  • Harriss, R.C., E. Gorham, D.I. Sebacher, K.B. Bartlett, P.A. Flebbe. 1985. Methane flux from northern peatlands. Nature, 315: 652–653.

    Article  CAS  Google Scholar 

  • Harriss, R.C., S.C. Wofsy, M. Garstang, E.V. Browell, L.C.B. Molion, R.J. McNeal, J.M. Hoell, Jr, R.J. Bendura, S.M. Beck, R.L. Navarro, J.T. Riley, R.L. Snell. 1988a. The Amazon Boundary Layer Experiment (ABLE 2A): Dry season 1985. J. Geophys. Res., 93:1, 351–1, 360.

    Google Scholar 

  • Harriss, R.C., D.I. Sebacher, K.B. Bartlett, D.S. Bartlett, P.M. Crill. 1988b. Sources of atmospheric methane in the south Florida environment. Global Biogeochem. Cycles, 2: 231–243.

    Article  CAS  Google Scholar 

  • Harriss, R.C., M. Garstang, S.C. Wofsy, S.M. Beck, R.J. Bendura, J.R.B. Coelho, J.W. Drewry, J.M. Hoell, Jr, P.A. Matson, R.J. McNeal, L.C.B. Molion, R.L. Navarro, V. Rabine, R.L. Snell. 1990. The Amazon Boundary Layer Experiment (ABLE 2B): Wet season 1987. J. Geophys. Res., 95:16, 72116, 736.

    Google Scholar 

  • Harriss, R.C., K. Bartlett, S. Frolking, P. Crill. 1993. Methane emissions from northern peatlands: a review and assessment. In: Biogeochemistry of Global Change: Radiatively Active Trace Gases (R.S. Oremland, ed.), Chapman and Hall, New York (in press).

    Google Scholar 

  • Holzapfel-Pschorn, A., W. Seiler. 1986. Methane emission during a cultivation period from an Italian rice paddyJ. Geophys. Res., 91:11803–11,814.

    Google Scholar 

  • Isaksen, I.S.A., O. Hov. 1987. Calculation of trends in the tropospheric concentration of O3, OH, CO, CH4 and NOx. Tellus B, 39: 122–139.

    Google Scholar 

  • Keller, M.M. 1990. Biological sources and sinks of methane in tropical habitats and tropical atmospheric chemistry. Ph.D. thesis. Princeton University and National Center for Atmospheric Research, 216 p.

    Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1982. Secular trends of atmospheric methane (CH4). Chemosphere, 11: 877–883.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1983. Sources, sinks and seasonal cycles of atmospheric methane. J. Geophys. Res., 88:5, 131–5, 144.

    Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1985. Causes of increasing methane: Depletion of hydroxyl radicals and the rise of emissions. Atmos. Environ., 19: 397–407.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1987. Atmospheric methane: Trends over the last 10,000 years. Atmos. Environ., 21:2, 445–2, 452.

    Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen, M.J. Shearer. 1989. Trends of atmospheric methane in the 1960s and 1970s. J. Geophys. Res., 94:18, 279–18, 288.

    Google Scholar 

  • King, G.M., W.J. Wiebe. 1978. Methane release from soils of a Georgia salt marsh. Geochim. Cosmochim. Acta, 42: 343–348.

    Article  CAS  Google Scholar 

  • King, S.L., P.D. Quay, J.M. Lansdown. 1989. The 13C/12C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations. J. Geophys. Res., 94:18, 273–18, 277.

    Google Scholar 

  • Koyama, T. 1963. Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen. J. Geophys. Res., 68:3, 971–3, 973.

    Google Scholar 

  • Koyama, T. 1964. Biogeochemical studies on lake sediments and paddy soils in the production of atmospheric methane and hydrogen. In: Recent Researches in the Fields of Hydrosphere, Atmosphere and Nuclear Geochemistry (Y. Miyake and T. Koyama), Muruzen Co. Ltd., Tokyo, p 143.

    Google Scholar 

  • Lang, P.M., L.P. Steele, R.C. Martin, K.A. Masarie. 1990a. Atmospheric methane data for the period 1983–1985 from the NOAA/CMDL global cooperative flask sampling network. Tech. Mem. ERL CMDL-1. Natl. Oceanic Atmos. Admin., Boulder, CO.

    Google Scholar 

  • Lang, P.M., L.P. Steele, R.C. Martin. 1990b. Atmospheric methane data for the period 1986–1988 from the NOAA/CMDL global cooperative flask sampling network. Tech. Mem. ERL CMDL-2. Natl Oceanic Atmos Admin, Boulder, CO.

    Google Scholar 

  • Matthews, E., I. Fung. 1987. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cycles, 1: 61–86.

    Article  CAS  Google Scholar 

  • Mayer, E.W., D.R. Blake, S.C. Tyler, Y. Makide, D.C. Montague, F.S. Rowland. 1982. Methane- Interhemispheric concentration gradient and atmospheric residence time. Proc. Natl. Acad. Sci. U.S.A., 79:1, 366–1, 370.

    Google Scholar 

  • Moore, T.R., R. Knowles. 1987. Methane and carbon dioxide evolution from subarctic fens. Can. J. Soil Sci., 67: 77–81.

    Article  CAS  Google Scholar 

  • Moore, T.R., R. Knowles. 1989. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci., 69: 33–38.

    Article  CAS  Google Scholar 

  • Moore, T.R., R. Knowles. 1990. Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochem, 11: 45–61.

    Article  Google Scholar 

  • Moore, T., N. Roulet, R. Knowles. 1990. Spatial and temporal variations of methane flux from subarctic/northern boreal fens. Global Biogeochem. Cycles, 4: 29–46.

    Article  CAS  Google Scholar 

  • Morrissey, L.A., R.A. Ennis 1981. Vegetation mapping of the National Petroleum Reserve in Alaska using Landsat digital data. U.S. Geol. Surv. Open File Report 81–315, U.S. Geol. Surv., Reston, VA, 25 p.

    Google Scholar 

  • Morrissey, L.A., G.P. Livingston. 1992. Methane emissions from Alaska Arctic tundra: An assessment of local spatial variability. J. Geophys. Res., 97:16, 661–16, 670.

    Google Scholar 

  • National Wetlands Working Group. 1988. Wetlands of Canada. Ecological Land Classification Series No. 24. Sustainable Development Branch, Environment Canada, Ottawa and Polyscience Publications, Montreal, 452 p.

    Google Scholar 

  • Ormsby, J.P., B.J. Blanchard, A.J. Blanchard. 1985. Detection of lowland flooding using active microwave systems. Photogram. Eng. Rem. Sens., 51: 317–328.

    Google Scholar 

  • Pearman, G.I., D. Etheridge, F. De Silva, P.J. Fraser. 1986. Evidence of changing concentrations of atmospheric CO2, N2O and CH4 from air bubbles in Antarctic ice. Nature, 320: 248–250.

    Article  CAS  Google Scholar 

  • Quay, P., S.K. King, J.M. Lansdown, D.O. Wilbur. 1988. Isotopic composition of methane released from wetlands: Implications for the increase in atmospheric methane. Global Biogeochem. Cycles, 2: 385–397.

    Article  CAS  Google Scholar 

  • Quay, P., S.K. King, J. Stutsman, D.O. Wilbur, L.P. Steele, I. Fung, R.H. Gammon, T.A. Brown, G.W. Farwell, P.M. Grootes, F.H. Schmidt. 1991. Carbon isotopic composition of atmospheric CH4: Fossil and biomass burning source strengths. Global Biogeochem. Cycles, 5: 25–47.

    Article  CAS  Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil. 1981. Atmospheric methane (CH4): Trends and seasonal cycles. J. Geophys. Res , 86:9, 826–9, 832.

    Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil. 1984. Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends and interhemispheric gradient. J. Geophys. Res., 89:11, 599–11, 605.

    Google Scholar 

  • Ritter, J.A., J.D.W. Barrick, G.W. Sachse, G.L. Gregory, M.A. Woerner, C.E. Watson, G.F. Hill, J.E. Collins 1992. Airborne flux measurements of trace species in an arctic boundary layer. J. Geophys. Res., 97:16, 60116, 625.

    Google Scholar 

  • Rose, P.W., P.C. Rosendahl. 1983. Classification of Landsat data for hydrologic application, Everglades National Park. Photogram. Eng. Rem. Sens., 49: 505–511.

    Google Scholar 

  • Roulet, N.T., R. Ash, T.R. Moore. 1992a. Low boreal wetlands as a source of atmospheric methane. J. Geophys. Res., 97:3, 739–3, 749.

    Google Scholar 

  • Roulet, N.T., J. Ritter, A. Jano, C. Kelly, L. Klinger, T.R. Moore, R. Protz, W.R. Rouse. (1992b). The Hudson Bay Lowland as a source of atmospheric methane, J. Geophys. Res. (in press).

    Google Scholar 

  • Roulet, N.T., T. Moore, J. Bubier, P. LaFleur. 1992c. Northern fens: Methane flux and climatic change. Tellus, 44B: 100–105.

    Google Scholar 

  • Rust, F.E. 1981. Ruminant methane d(L.,13012, values: Relationship to atmospheric methane. Science, 211:1, 044–1, 046.

    Google Scholar 

  • Schoell, M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochem. Cosmochim. Acta, 44: 649–661.

    Article  CAS  Google Scholar 

  • Sebacher, D.I., R.C. Harriss, K.B. Bartlett. 1985. Methane emissions to the atmosphere through aquatic plants. J. Environ. Qual., 14: 40–46.

    Article  CAS  Google Scholar 

  • Sebacher, D.I., R.C. Harriss, K.B. Bartlett, S.M. Sebacher, S.S. Grice. 1986. Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh. Tellus, 38B: 1–10.

    Google Scholar 

  • Seiler, W. 1984. Contribution of biological processes to the global budget of CH4 in the atmosphere. In: Current Perspectives in Microbial Ecology ( M. Klug and C. Reddy, eds.), Amer. Soc. Microbiol., Washington, D.C., p 468.

    Google Scholar 

  • Seiler, W., R. Conrad. 1987. Contribution of tropical ecosystems to the global budgets of trace gases, especially CH4, H2, CO and N2O. In: The Geophysiology of Amazonia, Vegetation and Climate Interactions ( R.E. Dickinson, ed.), John Wiley, New York, p 133.

    Google Scholar 

  • Stauffer, B., F. Fischer, A. Neftel, H. Oeschger. 1985. Increase of atmospheric methane recorded in Antarctic ice core. Science, 229:1, 386–1, 388.

    Google Scholar 

  • Stauffer, B., E. Lochbronner, H. Oeschger, J. Schwander. 1988. Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene. Nature, 332: 812–814.

    Article  CAS  Google Scholar 

  • Steele, L.P., P.J. Fraser, R.A. Rasmussen, M.A.K. Khalil, T.J. Conway, A.J. Crawford, R H Gammon, K.A. Masarie, K.W. Thoning. 1987. The global distribution of methane in the troposphere. J. Atmos. Chem., 5: 125–171.

    Article  CAS  Google Scholar 

  • Stevens, C.M. 1988. Atmospheric methane. Chem. Geol., 71: 11–21.

    Article  CAS  Google Scholar 

  • Stevens, C.M., A. Engelkemeir. 1982. Stable carbon isotopic composition of methane from some natural and anthropogenic sources. J. Geophys. Res., 87:4, 879: 4, 882.

    Google Scholar 

  • Svensson, B.H. 1976. Methane production in tundra peat. In: Microbial Production and Utilization of Gases (Ha CH4, CO) (H.G. Schlegel, G. Gottschalk, and N. Pfennig), Gottingen, p 135.

    Google Scholar 

  • Svensson, B.H. 1980. Carbon dioxide and methane fluxes from ombrotrophic parts of a subarctic mire. Ecol. Bull. (Stockholm), 30: 235–250.

    CAS  Google Scholar 

  • Svensson, B.H., T. Rosswall. 1984. In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos, 43: 341–350.

    Article  CAS  Google Scholar 

  • Tathy, J.-.P, B. Cros, R.A. Delmas, A. Marenco, J. Servant, M. Labat. 1992. Methane emission from flooded forest in Central Africa. J. Geophys. Res., 97:6, 159–6, 168.

    Google Scholar 

  • Taylor, J.A., G. Brasseur, P. Zimmerman, R. Cicerone. 1991. A study of the sources and sinks of methane and methyl chloroform using a global three-dimensional Lagrangian tropospheric tracer transport model. J. Geophys. Res., 96:3, 013–3, 044.

    Google Scholar 

  • Thompson, A.M., R.J. Cicerone. 1986. Atmospheric CH4, CO and OH from 1960 to 1985. Nature, 321: 148–150.

    Article  CAS  Google Scholar 

  • Twenhofel, W.H. 1926. Principles of Sedimentation. McGraw-Hill, New York.

    Google Scholar 

  • Twenhofel, W.H. 1951. Principles of Sedimentation. McGraw-Hill, New York.

    Google Scholar 

  • Tyler, S.C. 1986. Stable carbon isotope ratios in atmospheric methane and some of its sources J. Geophys. Res., 91:13, 232–13, 238.

    Google Scholar 

  • Tyler, S.C., P.R. Zimmerman, C. Cumberbatch, J.P. Greenberg, C. Westberg, J.P.E.C. Darlington. 1988. Measurements and interpretation of d13C of methane from termites, rice paddies, and wetlands in Kenya. Global Biogeochem. Cycles, 2: 341–355.

    Article  CAS  Google Scholar 

  • UNESCO. 1973. International Classification and Mapping of Vegetation. UNESCO, Paris, 93 p.

    Google Scholar 

  • Wahlen, M., N. Tanaka, R. Henry, T. Yoshinari, R.G. Fairbanks, A. Shemesh, W.S. Broecker. 1988. 13C, D, and 14C in methane. In: Report to Congress and Environmental Protection Agency on NASA Upper Atmosphere Research Program,NASA, p 315.

    Google Scholar 

  • Wahlen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglen, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, W. Broecker. 1989. Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. Science, 245: 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Walker, D.A., W. Acevedo, K.R. Everett, L. Gaydos, J. Brown, P.J. Webber. 1982. Landsat-assisted environmental mapping in the Arctic National Wildlife Refuge, Alaska. U.S. Cold Regions Res Eng Lab, Hanover, NH.

    Google Scholar 

  • Wassmann, R., U.G. Thein, M.J. Whiticar, H. Rennenberg, W. Seiler, W.J. Junk. 1992. Methane emissions from the Amazon floodplain: Characterization of production and transport. Global Biogeochem. Cycles, 6: 3–13.

    Article  CAS  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh. 1988. A methane flux time series for tundra environments. Global Biogeochem. Cycles, 2: 399–409.

    Article  CAS  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh. 1990. A methane flux transect along the trans-Alaska pipeline haul road. Tellus, 42B: 237–249.

    Article  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh. 1992. Interannual variations in tundra methane emission: A 4-year time-series at fixed sites. Global Biogeochem. Cycles, 6: 139–159.

    Article  CAS  Google Scholar 

  • Whiting, G.J., J.P. Chanton, D.S. Bartlett, J.D. Happell. 1991. Relationships between CH4 emission, biomass and CO2 exchange in a subtropical grassland. J. Geophys. Res., 96:13, 067–13, 071.

    Google Scholar 

  • Wilson, J.O., P.M. Crill, K.B. Bartlett, D.I. Sebacher, R.C. Harriss, R.L. Sass. 1989. Seasonal variation of methane emissions from a temperate swamp. Biogeochemistry, 8: 55–71.

    Article  CAS  Google Scholar 

  • Zoltai, S.C., F.C. Pollett. 1983. Wetlands in Canada: Their classification, distribution and use. In: Ecosystems of the World, Mires: Swamp, Bog Fen and Moor, Case Studies, 4B. ( A.J.P. Gore, ed.), Elsevier, New York, p 245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matthews, E. (1993). Wetlands. In: Khalil, M.A.K. (eds) Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84605-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84605-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84607-6

  • Online ISBN: 978-3-642-84605-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics