Skip to main content

Modelling Growth and Light Absorption in the Marine Diatom Skeletonema Costatum

  • Conference paper
Book cover Towards a Model of Ocean Biogeochemical Processes

Part of the book series: NATO ASI Series ((volume 10))

Abstract

In this paper I consider the relationship between light absorption and growth in marine phytoplankton. In particular, I will derive a mathematical description of the daily carbon-specific rate of photosynthesis and the photosynthetic quantum yield of Skeletonema costatum as a function of four environmental factors: temperature, nutrient concentration, light intensity, and photoperiod. The formulations describe laboratory measurements of the growth of this marine diatom when the cells are fully acclimated and in continuous culture. Among other goals it is hoped that this study will aid in interpreting global ocean color imagery, which provides synoptic maps of the concentration of chlorophyll a at the sea surface, in regions where the four environmental parameters differ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asknes, and Egge. 1991. A theoretical model of nutrient uptake in phytoplankton. Mar. Ecol. Prog. Ser. 70:65–72.

    Article  Google Scholar 

  • Bannister, T.T. 1979. A general theory of steady state phytoplankton growth in a nutrient saturated mixed layer. Limnol. Oceanogr. 14: 386–391.

    Google Scholar 

  • Bannister, T.T. and E.A. Laws. 1980. Modeling phytoplankton carbon metabolism. in Primary Productivity in the Sea (P.G. Falkowski, ed). Plenum Press, New York. pp. 243–258.

    Chapter  Google Scholar 

  • Baumert, H. 1988. Beitrag zur Physik und numerischen Simulation von Oberflachengewassern unter Berucksichtigung der Wasserbeschaffenheit (Chapter 5). Dissertation, Dr. sc. nat. Technischen Universitet Dresden. 191 pp.

    Google Scholar 

  • Butler, W.L. 1978. Energy Distribution in the Photochemical Apparatus of Photosynthesis. Ann. Rev. Plant Physiol. 29:345–378.

    Article  Google Scholar 

  • Chalup, M.S. and E.A. Laws. 1990. A test of the assumptions and predictions of recent microalgal growth models with the marine phytoplankter Pavlova lutheri. Limnol. Oceanogr. 35: 583–596.

    Article  Google Scholar 

  • Cullen, JJ. 1990. On models of growth and photosynthesis in phytoplankton. Deep-Sea Res. 37: 667–683.

    Article  Google Scholar 

  • Dubinsky Z, P.G. Falkowski, K. Wyman. 1986. Light Harvesting and Utilization by Phytoplankton. Plant Cell Physiol. 27(7): 1335–1349.

    Google Scholar 

  • Falkowski, P.G., Z. Dubinsky, and K. Wyman. 1985. Growth-irradiance relationships in phytoplankton. Plant Cell Physiol. 27: 1335–1349.

    Google Scholar 

  • Fasham, M.J.R. and T. Platt. 1983. Photosynthetic response of phytoplankton to light: a physiological model. Proc. R. Soc. Lond. 219: 355–370.

    Article  Google Scholar 

  • Evans, G. and M.J.R. Fasham. this volume.

    Google Scholar 

  • Foyer, C., R. Furbank, J. Harbinson and P. Horton. 1990. The mechanisms contributing to photosynthetic control of electron transport of carbon assimilation in leaves. Photosynthesis Res. 25: 83–100.

    Article  Google Scholar 

  • Geider, R.J. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytologist 106: 1–34.

    Article  Google Scholar 

  • Geider, R.J. 1990. The relationship between steady state phytoplankton growth and photosynthesis. Limnol. Oceanogr. 35: 971.

    Article  Google Scholar 

  • Geider, R.J. 1992. Respiration: Taxation without representation? in Primary Productivity and Biogeochemical Cycles in the Sea (P.G. Falkowski and A.D. Woodhead, ed). Plenum Press, New York. pp. 333–360.

    Chapter  Google Scholar 

  • Jassby, A.D. and T. Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547.

    Article  Google Scholar 

  • Kiefer, D.A. and T. Enns. 1976. A steady state model of light, temperature, and carbon limited growth of phytoplankton. in Modeling of Biochemical Processes in Aquatic Systems (R.P. Canale, ed). Ann Arbor Science, Ann Arbor, MI. pp. 319–336.

    Google Scholar 

  • Kiefer, D.A. and B.G. Mitchell. 1983. A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency. Limnol. Oceanogr. 28: 770–776.

    Article  Google Scholar 

  • Kolber, Z., J. Zehr, and P.G. Falkwski. 1988. Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in Photosystem II Plant Physiol. 88: 923.

    Article  Google Scholar 

  • Laws, E.A. and T.T. Bannister. 1980. Nutrient-and light-limited growth of Thalassiosira fluviatilis in continuous culture with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25: 457–473.

    Article  Google Scholar 

  • Marra, J. et al. 1992. Estimation of seasonal primary production from moored optical sensors in the Sargasso Sea. J. Geophys. Res. 97: 7399–7412.

    Article  Google Scholar 

  • Raven, J. 1984. A cost-benefit analysis of photon absorption by photosynthetic unicells. New Phytologist 98: 593–625.

    Article  Google Scholar 

  • Ryther, J.H. and C.S. Yentsch. 1957. The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol. Oceanogr. 2: 281–286.

    Google Scholar 

  • Sakshaug, E., D.A. Kiefer and K. Andresen. 1989. A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum. Limnol Oceanogr. 34: 198–205.

    Article  Google Scholar 

  • Shuter, B. 1979. A model of physiological acclimation in unicellular algae. J. Theor. Biol. 78: 519–552.

    Article  Google Scholar 

  • Smith, R.A. 1980. The theoretical basis for estimating phytoplankton production and specific growth rate from chlorophyll, light, and temperature data. Ecol. Modelling 10: 243–264.

    Article  Google Scholar 

  • Sukenik, A., J. Bennett and P.G. Falkowski. 1987. Light-saturated photosynthesis: limitation by electron transport or carbon fixation? Biochim. Biophys. Acta: 891-905.

    Google Scholar 

  • Webb, W.L., M. Newton and D. Starr. 1974. Carbon dioxide exchange of Alnus rubra: A mathematical model. Oecologica (Berlin) 17: 281–291.

    Article  Google Scholar 

  • Yoder, J.A. 1979. Effect of temperature on light-limited growth and chemical composition of Skeletonema costatum (Bacillariophyceae). J. Phycol. 15: 362–370.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiefer, D.A. (1993). Modelling Growth and Light Absorption in the Marine Diatom Skeletonema Costatum . In: Evans, G.T., Fasham, M.J.R. (eds) Towards a Model of Ocean Biogeochemical Processes. NATO ASI Series, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84602-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84602-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84604-5

  • Online ISBN: 978-3-642-84602-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics