Skip to main content

Fluctuations : A Task Package for the Physicists

  • Conference paper
Towards a Model of Ocean Biogeochemical Processes

Part of the book series: NATO ASI Series ((volume 10))

  • 166 Accesses

Abstract

This paper aims to give a list of questions that the biogeochemical modelling community will pose for physicists in the context of the design and development of a “Model of Ocean Biogeochemical Processes”. It has no pretensions to being all-encompassing, rather it surveys the physical topics we see as the most relevant to the global ocean flux study and which as a whole address all time and space scales. Oceanographic phenomena are expressed over scales ranging across many orders of magnitude, from seconds to millennia, and from microns to megameters (see Table 1 below), and variation is observed on all scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldama AA (1990) Filtering techniques for turbulent flow simulation.In: Lecture Notes in Engineering, Vol 56, Springer Verlag

    Google Scholar 

  • Bannister TT (1979) Quantitative description of steady-state, nutrient saturated algal growth, including adaptation. Limnol Oceanogr 24:76–96.

    Article  Google Scholar 

  • Baumert H (1988) Dr Sc Nat Thesis, Techn Univ of Dresden, Germany

    Google Scholar 

  • Baumert H, Radach G (1992) Hysteresis of turbulent kinetic energy in nonrotational tidal flows: a model study. J Geophys Res 97: 3669–3677.

    Article  Google Scholar 

  • Bleck R, Boudra DB (1981) Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. J Phys Oceanogr 11:755–770.

    Article  Google Scholar 

  • Bogue NM, Huang RX, Bryan K (1986) Verification experiments with an isopycnal coordinate ocean model. J Phys Oceanogr 16:985–990.

    Article  Google Scholar 

  • Böning CW, Döscher R, Budich RG (1991) Seasonal transport variations in the western subtropical North Atlantic: Experiments with an eddyresolving model. J Phys Oceanogr21:1271–1289.

    Article  Google Scholar 

  • Bryan K (1963) A numerical investigation of a nonlinear model of a winddriven ocean. J Atmos Sci 20:594–606.

    Article  Google Scholar 

  • Bryan K (1969) A numerical method for the study of the world ocean. J Comput Phys 4:347–376.

    Article  Google Scholar 

  • Bryan K, Lewis LJ (1979) A water mass model of the World Ocean. J Geophys Res 34: 2503–2517.

    Article  Google Scholar 

  • Charney JG (1971) Geostrophic turbulence. J Atmos Sci 28:1087–1095.

    Article  Google Scholar 

  • Cox MD (1975) A baroclinic numerical model of the World Ocean. In: Numerical models of Ocean Circulation. National Academy of Sciences, Washington DC, p 107

    Google Scholar 

  • Cox MD (1985) An eddy resolving numerical model of the ventilated thermocline. J Phys Oceanogr 15:1312–1324.

    Article  Google Scholar 

  • Cox MD (1989) An idealised model of the World Ocean. Part I. The globalscale water masses. J Phys Oceanogr 19:1730–1752.

    Google Scholar 

  • Cushman-Roisin B, Tang B (1990) Geostrophic turbulence and emergence of eddies beyond the radius of deformation. J Phys Oceanogr 20:97–113.

    Article  Google Scholar 

  • Dippner JW (1991) A Lagrangian model of phytoplankton growth dynamics — a sensitivity analysis. CEC Report EUR 13371 EN, CEC Joint Research Centre Ispra, p 63

    Google Scholar 

  • England MH (1992) On the formation of Antarctic Intermediate and Bottom Water in ocean general circulation models. J Phys Oceanogr 22:918–926.

    Article  Google Scholar 

  • Frey H (1991) A three-dimensional, baroclinic shelf sea circulation model, part 1: The turbulence closure scheme and the one-dimensional test model Cont Shelf Res 11:365–395

    Google Scholar 

  • Gade HG (1991) When ice melts in sea water; a review of recent contributions to the study of dynamics and thermodynamics of melting ice sheets in seawater. Rep No 69, University of Berger, Norway

    Google Scholar 

  • Garwood RW (1977) An ocean mixed layer capable of simulating cyclic states. J Phys Oceanogr 7:455–468.

    Article  Google Scholar 

  • Gaspar P (1988) Modeling the seasonal cycle of the upper ocean. J Phys Oceanogr 18:161–180.

    Article  Google Scholar 

  • Gent PR, Mc Williams JC (1984) Balanced models in isentropic coordinates and the shallow water equations. Tellus 36A:166–171.

    Article  Google Scholar 

  • Gregg WW, Walsh JJ (1992) Simulation of the 1979 Spring Bloom in the Mid-Atlantic Bight: A Coupled Physical/Biological/Optical Model. J Geophys Res 97:5723–5743.

    Article  Google Scholar 

  • Haidvogel DB, Wilkin JL, Young R (1990) A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J Comput Phys94:151–185.

    Article  Google Scholar 

  • Hasselmann K (1982) An ocean model for climate variability studies. Prog Oceanogr 11:69–92.

    Article  Google Scholar 

  • Heinze C, Maier-Reimer E (1991) The Hamburg oceanic carbon cycle circulation model. Dtsch. Klimarechenzentrum Hamburg Techn. Rep. No 2

    Google Scholar 

  • Hibler WD III (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846.

    Article  Google Scholar 

  • Hofmann EE (1988) Plankton dynamics on the outer southeastern U.S. continental shelf. Part III: A coupled physical-biological model. J Mar Res 46:919–946

    Article  Google Scholar 

  • Hofmann EE, Hedström KS, Moisan JR, Haidvogel DB, Mackas DL (1991) Use of simulated drifter tracks to investigate general transport patterns and residence times in the coastal transition zone. J Geophys Res 96(C8):15041–15052

    Article  Google Scholar 

  • Holland WR (1978) The role of mesoscale eddies in the general circulation of the ocean: Numerical experiments using a wind-driven quasi-geostrophic model. J Phys Oceanogr 8:363–392.

    Article  Google Scholar 

  • Holland WR, Harrison DE, Semtner AJ Jr. (1983) Eddy-resolving models of large-scale ocean circulation. In: Robinson AR (ed.) Eddies in Marine Science. Springer-Verlag, Berlin and New York, p 379

    Chapter  Google Scholar 

  • Houghton RW, Smith PC, Fournier RO (1978) A simple model for cross-shelf mixing on the Scotian shelf. J Fish Res Bd Can 35:414–421.

    Article  Google Scholar 

  • Huang RX, Bryan K (1987) A multilayer model of the thermohaline and winddriven ocean circulation. J Phys Oceanogr 17:1909–1924.

    Article  Google Scholar 

  • Huang RX (1991) The three-dimensional structure of wind-driven ventilation and subduction. Rev Geophys (Suppl) 29:590–609.

    Google Scholar 

  • IGBP (1990) Coastal Ocean Fluxes and Resources. In: Holligan P. (ed.) International Geosphere Biosphere Programme: A study of the Global Change. Rept No 14, Ad Hoc Workshop, Tokyo

    Google Scholar 

  • Ikeda M (1986) A mixed layer beneath melting sea ice in the marginal ice zone using a one-dimensional turbulent closure model. J Geophys Res 91:5054–5060.

    Article  Google Scholar 

  • Ishizaka J, Hofmann EE (1988) Plankton Dynamics on the outer southeastern U.S. continental shelf. Part I: Lagrangian particle tracing experiments. J Mar Res 46:853–882.

    Article  Google Scholar 

  • Kiefer DA, Reynolds R (1992) A general steady-state model for light absorption and growth rate of Skeletonema costatum. In: Proceedings of the NATO Advanced Research Workshop “Towards a Model of Ocean Biogeochemical Processes, Chateau de Bonas, Springer-Verlag

    Google Scholar 

  • Kindle J, Thompson JD (1989) The 26-and 50-day oscillations in the western Indian Ocean: model results. J Geophys Res 94:4721–4736.

    Article  Google Scholar 

  • Kitaigorodskij SA, Lumley JL (1983) Wave-turbulence interactions in the upper ocean. Part I: The energy balance of the interacting fields of surface wind waves and wind-induced three-dimensional turbulence. J Phys Oceanogr 13:1977–1999 1977-1999

    Article  Google Scholar 

  • Klein P, Coantic M (1981) A numerical study of turbulent processes in the marine upper layers. J Phys Oceanogr 11:849–863.

    Article  Google Scholar 

  • Kochergin VP (1987) Three-dimensional prognostic models. In: Heaps NS (ed.) Three-dimensional coastal ocean models, Am Geophys Union, Washington D.C., p 201

    Chapter  Google Scholar 

  • Kraus EB, Turner JS (1967) A one-dimensional model of the seasonal thermocline, II. The general theory and its consequences. Tellus 19:98–106.

    Google Scholar 

  • Longhurst AR, Harrison WG (1989) The biological pump: Profiles of plankton production and consumption in the upper ocean. Prog Oceanogr 22:47–123.

    Article  Google Scholar 

  • Mac Vean MK, Woods JD (1980) Redistribution of scalars during upper ocean frontogenesis: a numerical model. Q J roy meteor Soc 106:293–311.

    Article  Google Scholar 

  • Maier-Reimer E, Hasselman K, Olbers D, Willebrand J (1982) An ocean circulation model for climate studies. Tech Rep, Max-Planck-Institut für Meteorologie

    Google Scholar 

  • Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled oceanatmosphere model. J Climate 1:841–866.

    Article  Google Scholar 

  • Martin PJ (1985) Simulation of the mixed layer at OWS November and Papa with several models. J Geophys Res 90: 903–916.

    Article  Google Scholar 

  • Martinson DG (1990) Evolution of the Southern Antarctic mixed layer and sea-ice; ocean deep water formation and ventilation. J Geophys Res 95:11641–11654.

    Article  Google Scholar 

  • McLaughlin D, Wood E (1988) A distributed parameter approach for evaluating the accuracy of groundwater model predictions, Part I. Water Resources Res 7:1037–1047.

    Article  Google Scholar 

  • McPhee MG, Mayku GA, Morison JH (1987) Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J Geophys Res 92:7017–7031.

    Article  Google Scholar 

  • McWilliams JC (1984) The emergence of isolated coherent vortices in turbulent flow. J Fluid Mech 146:21–43.

    Article  Google Scholar 

  • McWilliams JC, Holland WR, Chow J (1978) A description of numerical Antarctic circumpolar currents. Dyn Atmos Oceans 2:213–291.

    Article  Google Scholar 

  • Meehl GA (1990) Development of global coupled ocean-atmosphere general circulation models. Clim Dyn 5:19–33.

    Article  Google Scholar 

  • Mellor GL, Durbin PA (1975) The structure and dynamics of the ocean surface mixed layer. J Phys Oceanogr 5:718–728.

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806.

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875.

    Article  Google Scholar 

  • Mellor GL (1989) Retrospective on oceanic boundary layer modeling and second moment closure. In: Müller P, Henderson D (eds.) Proceedings of the ‘Aha Huliko’a Hawaiian Winter Workshop on Parameterization of Small-scale Processes, Honolulu, Hawaii, Hawaii Institute of Geophysics Special Pub. p 251

    Google Scholar 

  • Milne RD (1980) Applied Functional Analysis, Pitman, London

    Google Scholar 

  • Minas HJ, Codispoti LA, Dugdale RC (1982) Nutrients and primary production in the upwelling region off Northwest Africa. In: Rapports et Procès-Verbaux des Réunions, Conseil International pour l’Exploration de la Mer 180:148–183

    Google Scholar 

  • Mittelstaedt E (1983) The upwelling area off Northwest Africa-a description of phenomena related to coastal upwelling. Prog Oceanogr 12:307–331.

    Article  Google Scholar 

  • Miyakoda K, Rosati A (1984) The variation of sea surafce temperature in 1976 and 1977,2. The simulation with mixed layer models. J Geophys Res 89:6533–6542.

    Google Scholar 

  • Niiler PP, Kraus EB (1977) One dimensional models of the upper ocean. In: Kraus EB (ed.) Modelling and Prediction of the Upper Layers of the Ocean, Pergamon Press, p 143

    Google Scholar 

  • Oberhuber JM, Lunkeit F, Sausen R (1991) CO2 doubling experiments with a coupled global isopycnic ocean-atmosphere circulation model. MPI Rept, Max-Planck Institut für Meteorologie, Hamburg

    Google Scholar 

  • Owens WD, Lemke P (1990) Sensitivity studies with a sea ice-mixed layerpycnocline model in the Weddell Sea. J Geophys Res 95: 9527–9538.

    Article  Google Scholar 

  • Parkinson CL, Washington WM (1979) A large-scale numerical model of sea ice. J Geophys Res 84: 311–337.

    Article  Google Scholar 

  • Parsons AT (1969) A two-layer model of Gulf Stream separation. J Fluid Mech 39:511–528.

    Article  Google Scholar 

  • Patel VC, Rodi W, Scheuerer G (1985) Turbulence models for near-wall and low Reynolds number flows: a review. AIAA Journal 23 9:1308–1319.

    Article  Google Scholar 

  • Price JF, Weller RA, Pinkel R (1986) Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind-mixing. J Geophys Res 91:8411–8427.

    Article  Google Scholar 

  • Rahm L, Svensson U (1989) Dispersion in a stratified benthic boundary layer. Tellus 41A:148–161.

    Article  Google Scholar 

  • Richards KJ (1982) Modelling the benthic boundary layer. J Phys Oceanogr 12:428–439.

    Article  Google Scholar 

  • Riebesell U, Wolf-Gadrow EA, Smetacek V (1992) Carbon dioxide limitation of marine phytoplankron growth. Nature, submitted

    Google Scholar 

  • Rhines PB (1975) Waves and turbulence on a beta-plane. J Fluid Mech 69:417–443.

    Article  Google Scholar 

  • Rodi W (1987) Examples of calculation methods for flow and mixing in stratified fluids. J Geophys Res 92:5305–55328.

    Article  Google Scholar 

  • Salmon R (1980) Baroclinic instability and geostrophic turbulence. Geophys Astrophys Fluid Dyn 15:167–211.

    Article  Google Scholar 

  • Semtner AJ Jr., Chervin RM (1988) A simulation of the global ocean circulation with resolved eddies. J Geophys Res 93:15502–15522.

    Article  Google Scholar 

  • Smith LT, Boudra DB, Bleck R (1990) A wind-driven isopycnic coordinate model of the North and Equatorial Atlantic Ocean. J Geophys Res 95:13105–13128.

    Article  Google Scholar 

  • Steele J (1978) Spatial patterns in plankton communities, Plenum, New York

    Google Scholar 

  • Sündermann J (ed) (1986) Landolt-Bömstein, Numerical Data and Functional Relationships in Science and Technology, Group V:Geophysics and Space Research Vol 3 Oceanography, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  • Tang B, Cushman-Roisin B (1991) Two-layer geostrophic dynamics. Part II:Geostrophic turbulence. J Phys Oceanogr 22:128–138.

    Google Scholar 

  • The FRAM Group (1991) Initial results from a fine resolution model of the Southern Ocean. EOS, Trans Amer Geophys Union 72(169):174–175

    Google Scholar 

  • Van Camp L, Nykjaer L, Mittelstaedt E, Schlittenhardt P(1991) Upwelling and boundary circulation off Northwest Africa as depicted by infrared and visible satellite observations. Prog Oceanogr 26:357–402.

    Article  Google Scholar 

  • Walsh JJ (1983) Death in the sea:enigmatic phytoplankton loss. Prog Oceanogr 12:1–86.

    Article  Google Scholar 

  • Walsh JJ, Rowe GT, Iverson RL, McRoy CP (1981) Biological export of shelf carbon is a sink in the global CO2 cycle. Nature 291:196–201.

    Article  Google Scholar 

  • Wolf U, Woods JD (1988) Lagrangian simulation of primary production in the physical environment-the deep chlorophyll maximum and nutricline. In: Rothschild BJ (ed.) Towards a Theory on Biological-Physical Interactions in the World Ocean. Kluwer Academic Publishers, Dordrecht, p 51

    Chapter  Google Scholar 

  • Woods JD (1980) Do waves limit turbulent diffusion in the ocean? Nature 288:219–224

    Article  Google Scholar 

  • Woods JD, Onken R (1982) Diurnal variation and primary production in the ocean-preliminary results of a Lagrangian ensemble model. J Plank Res 4:735–756.

    Article  Google Scholar 

  • Woods JD (1985) The physics of thermocline ventilation. In: Nihoul JCJ (ed.) Coupled Ocean-Atmosphere Models. Elsevier Oceanogr Ser 40, Elsevier, New York, p 543

    Chapter  Google Scholar 

  • Woods JD, Barkmann W (1986) A lagrangian mixed layer model of Atlantic 18°C water formation. Nature 319:574–576.

    Article  Google Scholar 

  • Woods JD (1988) Mesoscale upwelling and primary production. In: Rothschild BJ (ed.) Toward a Theory on Biological-Physical Interactions in the World Ocean. Kluwer Academic Publishers, Dordrecht, p 7

    Chapter  Google Scholar 

  • Wroblewski JS (1989) A model of the spring bloom in the North Atlantic and its impact on oceanic optics. Limnol Oceanogr 34:1563–1571.

    Article  Google Scholar 

  • Yamazaki H, Osborn TR (1988) Review of oceanic turbulence: Implications for biodynamics. In: Rothschild BJ (ed.) Toward a Theory on Biological-Physical Interactions in the World Ocean. Kluwer Academic Publishers, Dordrecht, p 215

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baumert, H., Schrimpf, W., Woods, J.D., Garçon, V.C. (1993). Fluctuations : A Task Package for the Physicists. In: Evans, G.T., Fasham, M.J.R. (eds) Towards a Model of Ocean Biogeochemical Processes. NATO ASI Series, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84602-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84602-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84604-5

  • Online ISBN: 978-3-642-84602-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics