Skip to main content

An Annotated Bibliography of Marine Biological Models

  • Conference paper
Towards a Model of Ocean Biogeochemical Processes

Part of the book series: NATO ASI Series ((volume 10))

Abstract

Many papers have been written about models of pelagic ecosystems. Over 100 of these papers, written over a period of more than. 40 years, are included in a bibliography at the end of this appendix. Most introduce a model, normally of several trophic levels, discussing its aims and structure, plus the results obtained. Some papers consider only a particular subsystem of an ecosystem model, such as the uptake of nutrients or the relationship between the rate of photosynthesis and light intensity, or a certain aspect of the interaction of the physics of the ocean and the biota. A few papers are reviews of other models, or are conceptual models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Agoumi A, Gosse P, Khalanski M (1985) Numerical modelling of the influence of the vertical thermal structure on phytoplankton growth in the English Channel. In: Gibbs PE (ed) Proceedings of the 19th European Marine Biology Symposium, Plymouth, Devon, 16–21 September 1984. Cambridge University Press, Cambridge, p 23

    Google Scholar 

  2. Altabet MA, Robinson AR, Walstad LJ (1986) A model for the vertical flux of nitrogen in the upper ocean: Simulating the alteration of isotopic ratios. J Mar Res 44:203–225.

    Google Scholar 

  3. Andersen V, Nival P (1988) A pelagic ecosystem model simulating production and sedimentation of biogenic particles: role of salps and copepods. Mar Ecol Prog Ser 44:37–50.

    Google Scholar 

  4. Andersen V, Nival P (1989) Modelling of phytoplankton population dynamics in an enclosed water column. J mar biol Ass UK 69:625–646.

    Google Scholar 

  5. Andersen V, Nival P (1991) A model of the diel vertical migration of Zooplankton based on euphausiids. J Mar Res 49:153–175.

    Google Scholar 

  6. Andersen V, Nival P, Harris RP (1987) Modelling of a plankton ecosystem in an enclosed water column. J mar biol Ass UK 67:407–430.

    Google Scholar 

  7. Anderson TR (1992) Modelling the influence of food C:N ratio and respiration on growth and nitrogen excretion in marine Zooplankton and bacteria. J Plankton Res 14:1645–1671.

    Google Scholar 

  8. Bacastow R, Maier-Reimer E (1990) Ocean-circulation model of the carbon cycle. Climate Dynamics 4:95–125.

    Google Scholar 

  9. Bannister TT (1974) A general theory of steady-state phytoplankton growth in a nutrient saturated mixed layer. Limnol Oceanogr 19:13–30.

    Google Scholar 

  10. Bartell SM, Brenkert AL, Carpenter SL (1988) Parameter Uncertainty and the behaviour of a size-dependant plankton model. Ecol Modelling 40:85–95.

    Google Scholar 

  11. Belyaev VI, Lenin AI, Petipa PS (1975) Mathematical model of a pelagic ecosystem. Mar Biol 31:1–6.

    Google Scholar 

  12. Bienfang P, Szyper J, Laws E (1983) Sinking rate and pigment responses to light-limitation of a marine diatom: implications to dynamics of chlorophyll maximum layers. Oceanol Acta 6:55–62.

    Google Scholar 

  13. Carpenter SR, Kitchell JF (1984) Plankton community structure and limnetic primary production. Am Nat 124:159–172.

    Google Scholar 

  14. Chalker BE (1980) Modelling light saturation curves for photosynthesis: an exponential function. J Theor Biol 84:205–215.

    Google Scholar 

  15. Cullen JJ (1990) On models of growth and photosynthesis in phytoplankton. Deep-Sea Res 37:667–683.

    Google Scholar 

  16. Droop MR (1968) Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis Lutheri. J mar biol Ass UK 48:689–733.

    Google Scholar 

  17. Ducklow HW, Fasham MJR (1992) Bacteria in the greenhouse: modeling the role of oceanic plankton in the global carbon cycle. In: Mitchell R (ed) Environmental Microbiology. Wiley-Liss, New York, p 1

    Google Scholar 

  18. Dugdale RC (1967) Nutrient limitation in the sea: dynamics, identification, and significance. Limnol Oceanogr 12:685–695.

    Google Scholar 

  19. Eilers PHC, Peeters JHC (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Modelling 42:199–216.

    Google Scholar 

  20. Evans GT (1988) A framework for discussing seasonal succession and coexistence of phytoplankton species. Limnol Oceanogr 33:1027–1036.

    Google Scholar 

  21. Evans GT, Parslow JS (1985) A model of annual plankton cycles. Biol Oceanogr 3:327–347.

    Google Scholar 

  22. Falkowski PG, Wirick CD (1981) A simulation model of the effects of vertical mixing on primary production. Mar Biol 65:69–75.

    Google Scholar 

  23. Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48:591–639.

    Google Scholar 

  24. Fasham MJR, Holligan PM, Pugh PR (1983) The spatial and temporal development of the spring phytoplankton bloom in the Celtic Sea, April 1979. Prog Oceanogr 12:87–145.

    Google Scholar 

  25. Fee EJ (1969) A numerical model for the estimation of photosynthetic production, integrated over time and depth, in natural waters. Limnol Oceanogr 14:906–911.

    Google Scholar 

  26. Fee EJ (1973) A numerical model for determining integral primary production and its application to Lake Michigan. J Fish Res Board Can 30:1447–1468.

    Google Scholar 

  27. Franks PJS, Wroblewski JS, Flierl GR (1986) Behavior of a simple plankton model with food-level acclimation by herbivores. Mar Biol 91:121–129.

    Google Scholar 

  28. Frost BW (1987) Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus ssp. Mar Ecol Prog Ser 39:49–68.

    Google Scholar 

  29. Garcon VC, Martinon L, Andrie C, Andrich P, Minster J-F (1989) Kinematics of CO2 fluxes in the tropical Atlantic Ocean during the 1983 northern summer. J Geophys Res 94:855–870.

    Google Scholar 

  30. Garside C (1985) The vertical distribution of nitrate in open ocean surface water. Deep-Sea Res 32:723–732.

    Google Scholar 

  31. Gordon DC Jr., Keizer PD, Daborn GR, Schwinghamer P, Silvert WL (1986) Adventures in holistic ecosystem modelling: the Cumberland Basin ecosystem model. Neth J Sea Res 20:325–335.

    Google Scholar 

  32. Hendrickson WH, Karri SBR, Shar AD (1985) Simulation in a plankton model. Int Rev Ges Hydrobiol 70:547–559.

    Google Scholar 

  33. Herman AN, Platt T (1983) Numerical modelling of diel carbon production and Zooplankton grazing on the Scotian Shelf based on observational data. Ecol Modelling 18:55–72.

    Google Scholar 

  34. Hofmann EE, Ambler JW (1988) Plankton Dynamics on the outer southeastern U.S. continental shelf. Part II: A time-dependent biological model. J Mar Res 46:883–917.

    Google Scholar 

  35. Hofmann EE, Pietrafesa LJ, Klinck JM, Atkinson LP (1980) A timedependent model of nutrient distribution in continental shelf waters. Ecol Modelling 10:193–214.

    Google Scholar 

  36. Horwood JW (1976) A model of primary and secondary production in Loch Storien, and its stability. In: Perscone P, Jaspers E (eds) Proceedings of the 10th European Symposium on Marine Biology. University Press, Wetteren Belgium, p 297

    Google Scholar 

  37. Horwood J (1982) Algal production in the west-central North Sea. J Plankton Res 4:103–124.

    Google Scholar 

  38. Isaacs JP (1973) Potential trophic biomasses and trace-substance concentrations in unstructured marine food webs. Mar Biol 22:97–104.

    Google Scholar 

  39. Iverson RL, Curl HC Jr., Saugen JL (1974) Simulation model for winddriven summer phytoplankton dynamics in Auke Bay, Alaska. Mar Biol 28:169–177.

    Google Scholar 

  40. Iwakuma T, Yasuno M (1983) A comparison of several mathematical equations describing photosynthesis-light curves for natural phytoplankton populations. Arch Hydrobiol 97:208–226.

    Google Scholar 

  41. Jamart BM, Winter DF, Banse K, Anderson GC, Lam RK (1977) A theoretical study of phytoplankton growth and nutrient distribution in the Pacific Ocean off the northwestern U.S. coast. Deep-Sea Res 24:753–773.

    Google Scholar 

  42. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547.

    Google Scholar 

  43. Kiefer DA, Kremer JN (1981) Origins of vertical patterns of phytoplankton and nutrients in the temperate, open ocean: a stratigraphic hypothesis. Deep-Sea Res 28A:1087–1105.

    Google Scholar 

  44. King FD (1987) Nitrogen recycling efficiency in steady-state oceanic environments. Deep-Sea Res 34A:843–856.

    Google Scholar 

  45. Kmet T, Straskraba M (1989) Global behaviour of a generalised aquatic ecosystem model. Ecol Modelling 45:95–110.

    Google Scholar 

  46. Laake M, Dahle AB, Eberlein K, Rein K (1983) A modelling approach to the interplay of carbohydrates, bacteria and non-pigmented flagellates in a controlled ecosystem experiment with Skeletonema Costatum. Mar Ecol Prog Ser 14:71–79.

    Google Scholar 

  47. Lange GD, Hurley AC (1975) A theoretical treatment of unstructured food webs. Fish Bull 73:378–381.

    Google Scholar 

  48. Laws EA, Chalup M.S (1990) A microalgal growth model. Limnol Oceanogr 35:599–608.

    Google Scholar 

  49. Lederman TC, Tett P (1981) Problems in modelling the photosynthesislight relationship for phytoplankton. Bot Mar 24:125–134.

    Google Scholar 

  50. Lehman JT, Botkin DR, Likens GE (1975) The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnol Oceanogr 20:343–364.

    Google Scholar 

  51. Moloney CL, Bergh MO, Field JG, Newell RC (1986) The effect of sedimentation and microbial nitrogen regeneration in a plankton community: a simulation investigation. J Plankton Res 8:427–445.

    Google Scholar 

  52. Moloney CL, Field JG (1991) The size-based dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows. J Plankton Res 13:1003–1038.

    Google Scholar 

  53. Moloney CL, Field JG, Lucas MI (1991) The size-based dynamics of plankton food webs. II. Simulations of three contrasting southern Benguela food webs. J Plankton Res 13:1039.-1091

    Google Scholar 

  54. Morrison KA, Therien N, Marcus B (1987) Comparison of six models for nutrient limitations on phytoplankton. Can J Fish Aquat Sci 44:1278–1288.

    Google Scholar 

  55. O’Brien JJ, Wroblewski JS (1973) A simulation model of the mesoscale distribution of the lower marine trophic levels off west Florida. Inv Pesq 37:193–244.

    Google Scholar 

  56. O’Brien WJ (1974) The dynamics of nutrient limitation of phytoplankton algae: a model reconsidered. Ecology 55:135–141.

    Google Scholar 

  57. O’Neill RV, DeAngelis DL, Pastor JJ, Jackson BJ, Post WM (1989) Multiple nutrient limitation in ecological models. Ecol Modelling 46:147–164.

    Google Scholar 

  58. Ohuchi A, Fukuoka J, Miyakoshi A, Suzuki M (1986) Modelling of the lower trophic levels of a marine ecosystem and its example of shortperiod variations of chlorophyll and nutrient in Harima-nada. Ecol Modelling 32:149–163.

    Google Scholar 

  59. Pace ML, Glasser JE, Pomeroy LR (1984) A simulation analysis of continental shelf food webs. Mar Biol 82:47–63.

    Google Scholar 

  60. Parker RA (1986) Simulating the develpment of chlorophyll maxima in the Celtic Sea. Ecol Modelling 33:1–11.

    Google Scholar 

  61. Parsons TR, Kessler TA (1987) An ecosystem model for the assessment of plankton production in relation to the survival of young fish. J Plankton Res 9:125–137.

    Google Scholar 

  62. Patten BC (1968) Mathematical models of plankton production. Int Rev Ges Hydrobiol53:357–408.

    Google Scholar 

  63. Platt T, Denman KL, Jassby AD (1977) Modelling the productivity of phytoplankton. In: Goldberg ED, McCave IN, O’Brien JJ, Steele JH (eds) The Sea, Volume 6. J. Wiley and Sons, Chichester, p 807

    Google Scholar 

  64. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 83:687–701.

    Google Scholar 

  65. Radach G (1980) Preliminary simulations of the phytoplankton and phosphate dynamics during FLEX’ 76 with a simple two-component model. ‘Meteor’ Forsch-Ergebnisse Reihe A 22:151–163.

    Google Scholar 

  66. Radach G, Maier-Reimer E (1975) The vertical structure of phytoplankton growth dynamics: a mathematical model. Mem Soc R Sci Liege 6e serie 7:113–146.

    Google Scholar 

  67. Radford PJ (1979) Some aspects of an estuarine ecosystem model — GEMBASE. In: Jorgensen SE (ed) State-of-the-Art in Ecological Modelling, Vol. 7: Proceedings of the Conference on Ecological Modelling, Copenhagen, 28th August to 2nd September 1978. Pergamon Press, Oxford, p 301

    Google Scholar 

  68. Riley GA (1946) Factors controlling phytoplankton populations on Georges Bank. J Mar Res 6:54–73.

    Google Scholar 

  69. Riley GA (1965) A mathematical model of regional variations in plankton. Limnol Oceanogr 10(suppl):R202–R215

    Google Scholar 

  70. Riley GA, Stommel H, Bumpus DF (1949) Quantitative ecology of the plankton of the western North Atlantic. Bull Bingham Oceanogr Collect. 12:1–169.

    Google Scholar 

  71. Ross GG, Nival P (1976) Plankton Modelling in the Bay of Villefranche. J Theor Biol56:381–399.

    Google Scholar 

  72. Sakshaug E, Slagstad D, Holm-Hansen O (1991) Factors controlling the development of phytoplankton blooms in the Antarctic Ocean — a mathematical model. Mar Chem 35:259–271.

    Google Scholar 

  73. Simonot J-Y, Dollinger E, Le Treut H (1988) Thermodynamic-biological-optical coupling in the oceanic mixed layer. J Geophys Res 93C:8193–8202.

    Google Scholar 

  74. Slagstad D, Stole-Hansen K (1991) Dynamics of plankton growth in the Barents Sea. Model studies. Polar Res 10:173–186.

    Google Scholar 

  75. Steele JH (1958) Plant production in the northern North Sea. Marine Res (Scot Home Dept) 1958(7):1–36

    Google Scholar 

  76. Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7:137–150.

    Google Scholar 

  77. Steele JH, Henderson EW (1976) Simulation of vertical structure in a planktonic ecosystem. Scottish Fisheries Res Rep No 5:1–27..

    Google Scholar 

  78. Steele JH, Henderson EW (1981) A simple plankton model. Am Nat 117:676–691.

    Google Scholar 

  79. Steele JH, Henderson EW (1992) The role of predation in plankton models. J Plankton Res 14:157–172.

    Google Scholar 

  80. Steele JH, Mullin MM (1977) Zooplankton Dynamics. In: Goldberg ED, McCave IN, O’Brien JJ, Steele JH (eds) The Sea, Volume 6. J. Wiley and Sons, Chichester, p 857

    Google Scholar 

  81. Stigebrandt A, Wulff F (1987) A model for the dynamics of nutrients and oxygen in the Baltic proper. J Mar Res 45:729–759.

    Google Scholar 

  82. Sverdrup HA (1953) On conditions for the vernal blooming of phytoplankton. J cons int explor Mer 18:287–295.

    Google Scholar 

  83. Takahashi M, Fujii K, Parsons TR (1973) Simulation study of phytoplankton photosynthesis and growth in the Fraser River estuary. Mar Biol 19:102–116.

    Google Scholar 

  84. Taylor AH (1988) Characteristic properties of models for the vertical distribution of phytoplankton under stratification. Ecol Modelling 40:175–199.

    Google Scholar 

  85. Taylor AH, Harris JRW, Aiken J (1986) The interaction of physical and biological processes in a model of the vertical distribution of phytoplankton under stratification. In: Nihoul JC (ed) Marine Interfaces Ecohydrodynamics. Elsevier Oceanography Series, 42:313-330

    Google Scholar 

  86. Taylor AH, Joint I (1990) A steady-state analysis of the ‘microbial loop’ in stratified systems. Mar Ecol Prog Ser 59:1–17.

    Google Scholar 

  87. Taylor AH, Stephens JA (1993) Diurnal variations of convective mixing and the spring bloom of phytoplankton. Deep-Sea Res II 40:389–408.

    Google Scholar 

  88. Taylor AH, Watson AJ, Ainsworth M, Robertson JE, Turner DR (1991) A modelling investigation of the role of phytoplankton in the balance of carbon at the surface of the North Atlantic. Global Biogeochem. Cycles 5:151–171.

    Google Scholar 

  89. Taylor AH, Watson AJ, Robertson JE (1992) The influence of the spring phytoplankton bloom on carbon dioxide and oxygen concentrations in the surface waters of the North-East Atlantic during 1989. Deep-Sea Res 39:137–152.

    Google Scholar 

  90. Tett P (1981) Modelling phytoplankton production at shelf-sea fronts. Phil Trans R Soc Lond A 302:605–615.

    Google Scholar 

  91. Tett P, Edwards A, Jones K (1986) A model for the growth of shelf-sea phytoplankton in summer. Est Coast Shelf Sci 23:641–672.

    Google Scholar 

  92. Thingstad TF (1987) Utilization of N, P and organic C by heterotrophic bacteria. I Outline of a chemostat theory with a consistent concept of ‘maintenance’ metabolism. Mar Ecol Prog Ser 35:99–109.

    Google Scholar 

  93. Thingstad TF, Pengerud B (1985) Fate and effect of allochthonous organic material in aquatic microbial systems. An analysis based on chemostat theory. Mar Ecol Prog Ser 21:47–62.

    Google Scholar 

  94. Thingstad TF, Sakshaug E (1990) Control of phytoplankton growth in nutrient recycling ecosystems. Theory and terminology. Mar Ecol Prog Ser 63:261–272.

    Google Scholar 

  95. Vinogradov MYe, Krapivin VF, Menshutkin VV, Fleyshman BS, Shushkina EA (1973) Mathematical model of the functions of the pelagic ecosystem in tropical regions (from the 50th voyage of the R/V Vityaz’). Oceanology USSR 13:704–717.

    Google Scholar 

  96. Vinogradov ME, Menshutkin VV, Shushkina EA (1972) On mathematical simulation of a pelagic ecosystem in tropical waters of the ocean. Mar Biol 16:261–268.

    Google Scholar 

  97. Vollenweider RA (1965) Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. Mem Ist Ital Idrobiol 18(suppl):425–457.

    Google Scholar 

  98. Walsh JJ (1975) A spatial simulation model of the Peru upwelling ecosystem. Deep-Sea Res 22:201–236.

    Google Scholar 

  99. Williams PJLeB (1981) Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch Sonderh 5:1–28.

    Google Scholar 

  100. Winter DF, Banse K, Anderson GC (1975) The dynamics of phytoplankton blooms in Puget Sound, a fjord in the north-western United States. Mar Biol 29:139–176.

    Google Scholar 

  101. Wolf KU, Woods JD (1988) Lagrangian simulation of primary production in the physical environment — the deep chlorophyll maximum and nutricline. In: Rothschild BJ (ed) Towards a Theory of Biological-Physical Interactions in the World Ocean. Reidel, Dordrecht, p 51

    Google Scholar 

  102. Woods JD, Onken R (1982) Diurnal variation and primary production in the ocean — preliminary results of a Lagrangian ensemble model. J Plankton Res 4:735–756.

    Google Scholar 

  103. Wroblewski JS (1977) A model of phytoplankton plume formation during variable Oregon upwelling. J Mar Res 35:357–394.

    Google Scholar 

  104. Wroblewski JS (1984) Formulation of growth and mortality of larval northern anchovy in a turbulent feeding environment. Mar Ecol Prog Ser 20:13–22.

    Google Scholar 

  105. Wroblewski JS, Richman JG (1987) The non-linear response of plankton to wind mixing events — implications for the survival of larval northern anchovy. J Plankton Res 9:103–123.

    Google Scholar 

  106. Wroblewski JS, Sarmiento JL, Flierl GR (1988) An ocean basin scale model of plankton dynamics in the North Atlantic. I. Solutions for the climatological oceanographic conditions in May. Global Biogeochem Cycles 2:199–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Totterdell, I.J. (1993). An Annotated Bibliography of Marine Biological Models. In: Evans, G.T., Fasham, M.J.R. (eds) Towards a Model of Ocean Biogeochemical Processes. NATO ASI Series, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84602-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84602-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84604-5

  • Online ISBN: 978-3-642-84602-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics