Advertisement

Universality of the Long Time Tail in Hamiltonian Dynamics

An Approach to the f−1 Noise of Quartz Oscillators
  • Y. Aizawa
  • K. Tanaka
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

A universal law of the long time tail in nearly integrable systems is discussed and the onset mechanism of ”non-stationary” and ”f v fluctuation” is briefly reviewed using a lattice vibration model. The mechanism of f −1 fluctuations in quartz crystals is numerically pursued and compared with several experimental observations such as phase noises, phonon number fluctuations and dissipation coefficients.

Keywords

Dielectric Loss Phase Noise Quartz Crystal Lattice Vibration Resonant Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Aizawa. Prog. Theor. Phys., 81, (1989), 249.ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    Y. Aizawa, Y. Kikuchi, T. Iarayama, K. Yamamoto, M. Ota and K. Tanaka. Prog. Theor. Phys. Suppl. No. 98 (1989), 36.ADSCrossRefGoogle Scholar
  3. [3]
    M. B. Weissman. Rev. Mod. Phys., 60 (1988), 537.ADSCrossRefGoogle Scholar
  4. [4]
    V. F. Kroupa, editor. Frequency Stability: Fundamentals and Measurement. IEEE PRESS, New York, 1983.Google Scholar
  5. [5]
    N. Saito, N. Ooyama, Y. Aizawa and H. Hirooka. Prog. Theor. Phys. Suppl. No. 45 (1970), 209.ADSCrossRefGoogle Scholar
  6. [6]
    N. N. Nekhoroshev. Russian Math. Surveys, 32 (1977), 1.MATHADSCrossRefGoogle Scholar
  7. [7]
    V. I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. Benjamin, New York, 1968.Google Scholar
  8. [8]
    Y. Noguchi, Y. Teramachi and T. Musha. Jpn. J. Appl. Phys., 21 (1982), 61.ADSCrossRefGoogle Scholar
  9. [9]
    T. Musha, B. Gabor and M. Shoji. Phys. Rev. Lett., 64 (1990), 2394.Google Scholar
  10. [10]
    T. Musha, A. Nakajima and H. Akabane. Jpn. J. Appl. Phys. Pt. 2, 27 (1988), L311.CrossRefGoogle Scholar
  11. [11]
    Y. Aizawa. Prog. Theor. Phys. Suppl. No. 99 (1989), 149.ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    Y. Aizawa, K. Tanaka, J. Tonotani., in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Y. Aizawa
    • 1
  • K. Tanaka
    • 1
  1. 1.Department of Applied MathematicsWaseda University169 Shinjuku, TokyoJapan

Personalised recommendations