Skip to main content

Controlled Ventilation: Targets, Hazards and Options

  • Conference paper
Ventilatory Failure

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 15))

Abstract

Controlled mechanical ventilation (CMV) is intended to assure adequate gas exchange without incurring adverse effects related to ventilatory support. In recent years, numerous options for controlling ventilation have been proposed, most geared to the objectives of improving oxygenation and minimizing barotrauma. To choose rationally among these alternatives, it is crucial both to identify appropriate therapeutic endpoints for ventilatory support and to avoid iatrogenic misadventures. The purpose of this chapter is to examine the physiologic targets, hazards and options that characterize controlled ventilation of the critically ill patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marini JJ, Rodriguez RM, Lamb VJ (1986) The inspiratory workload of patient-initiated mechanical ventilation. Am Rev Respir Dis 134: 902–909

    PubMed  CAS  Google Scholar 

  2. Marini JJ, Smith TC, Lamb VJ (1988) External work output and force generation during synchronized intermittent mechanical ventilation. Effect of machine assistance on breathing effort. Am Rev Respir Dis 138: 1169–1179

    PubMed  CAS  Google Scholar 

  3. Coggeshall JW, Marini JJ, Newman JH (1985) Improved oxygenation after muscle relaxation in the adult respiratory distress syndrome. Arch Intern Med 145: 1718–1720

    Article  PubMed  CAS  Google Scholar 

  4. Lynch JP, Mhyre JG, Dantzker DR (1979) The influence of cardiac output on intrapulmonary shunt. J Appl Physiol 46:315–321

    PubMed  CAS  Google Scholar 

  5. Schumacker PT, Cain SM (1987) The concept of critical oxygen delivery. Intensive Care Med 13:223–229

    Article  PubMed  CAS  Google Scholar 

  6. Gurevitch MJ, Van Dyke J, Young ES, Jackson K (1986) Improved oxygenation and lower peak airway pressure in severe adult respiratory distress syndrome: Treatment with inverse ratio ventilation. Chest 89:211–213

    Article  PubMed  CAS  Google Scholar 

  7. Reynolds EOR (1971) Effect of alterations in mechanical ventilator settings on pulmonary gas exchange in hyaline membrane disease. Arch Dis Child 46: 152–159

    Article  PubMed  CAS  Google Scholar 

  8. Westenskow DR, Pace NL (1982) Differential lung ventilation. In: Prakash O (ed) Applied physiology in clinical respiratory care. Martinus Nijhoff Boston, pp 313–324

    Google Scholar 

  9. Gattinoni L, Pesenti A, Mascheroni D, et al (1986) Low frequency positive pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 256(7):881–886

    Article  PubMed  CAS  Google Scholar 

  10. Slutsky AS (1988) Nonconventional modes of ventilation. Am Rev Resp Dis 138: 175–183

    Article  PubMed  CAS  Google Scholar 

  11. Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129:385–387

    PubMed  CAS  Google Scholar 

  12. Truwit JD, Marini JJ (1988) Evaluation of thoracic mechanics in the ventilated patient. Part 1: Primary Measurements. J Crit Care 3(2): 133–150

    Article  Google Scholar 

  13. Truwit JD, Marini JJ (1988) Evaluation of thoracic mechanics in the ventilated patient. Part 2: Applied Mechanics. J Crit Care 3(3): 199–213

    Article  Google Scholar 

  14. Cunningham DJC, Robbins PA, Wolff CB (1986) Integration of respiratory responses to changes in alveolar partial pressures of CO2 and O2 and in arterial pH. In: Geiger SR (ed) Handbook of Physiology, Section 3: The Respiratory System. Vol. 2. American Physiology Society Bethesda, pp 475–528

    Google Scholar 

  15. Prechter GC, Nelson SB, Hubmayr RD (1990) The ventilatory threshold for carbon dioxide. Am Rev Respir Dis 141:758–764

    Article  PubMed  CAS  Google Scholar 

  16. Veselis RA (1988) Sedation and pain management for the critically ill. Critical Care Clinics 4: 167–181

    PubMed  CAS  Google Scholar 

  17. Greenleaf JE, Kozlowski S (1982) Physiological consequences of reduced physical activity during bedrest. Exerc Sport Sci Rev 10: 84–119

    Article  PubMed  CAS  Google Scholar 

  18. Panacek EA, Sherman B (1988) Hydrocortisone and pancuronium bromide: Acute myopathy during status asthmaticus. Crit Care Med (letter) 16:732

    Google Scholar 

  19. Brun-Buisson C, Gherardi R (1988) Hydrocortisone and pancuronium bromide: Acute myopathy during status asthmaticus. Crit Care Med (letter) 16:731

    Google Scholar 

  20. Taylor P (1985) Neuromuscular blocking agents. In: Gilman AG, Goodman LS, Rail TW, Murad F (eds) The pharmacologic basis of therapeutics, 7th Edition. MacMillan New York, pp 222–235

    Google Scholar 

  21. Gattinoni L, Pesenti A (1987) ARDS: the non-homogeneous lung; facts and hypothesis. Crit Care Dig 6: 1–4

    Google Scholar 

  22. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136: 730–736

    Article  PubMed  CAS  Google Scholar 

  23. Maunder RJ, Shuman WP, McHugh JW, Marglin SI, Butler J (1986) Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA 255:2463–2465

    Article  PubMed  CAS  Google Scholar 

  24. Albert RK, Leasa D, Sanderson M, Robertson HT, Hlastala MP (1987) The prone position improves arterial oxygenation and reduces shunt in oleic acid-induced acute lung injury. Am Rev Respir Dis 135: 628–633

    PubMed  CAS  Google Scholar 

  25. Marini JJ, Tyler ML, Hudson LD, Davis BS, Huseby JS (1984) Influence of head-dependent positions on lung volume and oxygen saturation in chronic airflow obstruction. Am Rev Respir Dis 129:101–105

    PubMed  CAS  Google Scholar 

  26. Raine JM, Bishop JM (1963) A-a difference in O2 tension and physiological dead space in normal man. J Appl Physiol 18:284–288

    PubMed  CAS  Google Scholar 

  27. Refsum HE (1963) Relationship between state of consciousness and arterial hypoxemia and hypercapnia in patients with pulmonary insufficiency breathing own. Clin Sci 25: 361–367

    PubMed  CAS  Google Scholar 

  28. Schoene RB, Horbein TF (1988) High altitude adaptation. In: Murray JF, Nadel JA (eds) Textbook of respiratory medicine. W. B. Saunders, Philadelphia, pp 196–220

    Google Scholar 

  29. Schumacker PT, Samsel RW (1990) Oxygen supply consumption in ARDS. Clin in Chest Med 11:715–722

    CAS  Google Scholar 

  30. Nunn JF (1977) Applied Respiratory Physiology, Second Edition. Butterworths Boston, pp 460–470

    Google Scholar 

  31. Narins RG (1985) Alkali therapy of metabolic acidosis due to organic acids: The case for the judicious use of sodium bicarbonate. AKF Nephrology Letter 2: 13–22

    Google Scholar 

  32. Arieff AI, Leach W, Park R, Lazarowitz VC (1982) Systemic effects of NaHCO3 in experimental lactic acidosis in dogs. Am J Physiol 242:F586–591

    PubMed  CAS  Google Scholar 

  33. Weil MH, Trevino RP, Rackow EC (1985) Sodium bicarbonate during CPR. Does it help or hinder? Chest (letter) 88:487

    CAS  Google Scholar 

  34. Fraley DS, Adler S, Bruns FJ, Zett B (1980) Stimulation of lactate production by administration of bicarbonate in a patient with a solid neoplasm and lactic acidosis. N Engl J Med (letter) 303: 1100

    Article  CAS  Google Scholar 

  35. Kilburn KH, Dowell AR (1971) Renal function in respiratory failure. Arch Int Med 127:754–762

    Article  CAS  Google Scholar 

  36. Pesenti A (1990) Target blood gases during ARDS ventilatory management. Intensive Care Med 16:349–351

    Article  PubMed  CAS  Google Scholar 

  37. Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884

    PubMed  CAS  Google Scholar 

  38. Kolobow T, Moretti MP, Fumagalli R, et al (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135:312–315

    PubMed  CAS  Google Scholar 

  39. Gattinoni L, Pesenti A, Mascheroni D, et al (1986) Low frequency positive pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 256(7):881–886

    Article  PubMed  CAS  Google Scholar 

  40. Morris AH, Clemmer TP, Orme JF, Wallace CJ, Suchyta MR, Dean NC (1989) Clinical trial of extracorporeal CO2 removal (abstract). Chest 96(2): 1385

    Google Scholar 

  41. Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16:372–377

    Article  PubMed  CAS  Google Scholar 

  42. Narins RG, Bastl CP, Rudnick MR, et al (1982) Acid-base metabolism. In: Golnick HC (ed) Current Nephrology. John Wiley, New York, pp 7–9

    Google Scholar 

  43. Mitchell JH, Wildenthal K, Johnson RL Jr (1972) The effects of acid base disturbances on cardiovascular and pulmonary function. Kidney International 1:375–389

    Article  PubMed  CAS  Google Scholar 

  44. Housley E, Clarke SW, Hedworth-Whitty RB, Bishop JW (1970) Effect of acute and chronic acidemia and associated hypoxemia on the pulmonary circulation of patients with chronic bronchitis. Cardiovasc Research 4: 482–489

    Article  CAS  Google Scholar 

  45. Reynolds EOR (1975) Management of hyaline membrane disease. Br Med Bull 31: 18–24

    PubMed  CAS  Google Scholar 

  46. Woodring JH (1985) Pulmonary interstitial emphysema in the adult respiratory distress syndrome. Crit Care Med 13(10): 786–791

    Article  PubMed  CAS  Google Scholar 

  47. Albelda SM, Gefter WB, Kelley MA, et al (1983) Ventilator-induced subpleural air cysts: clinical, radiographic, and pathological significance. Am Rev Respir Dis 127: 360–365

    PubMed  CAS  Google Scholar 

  48. Marini JJ, Culver BH (1989) Systemic air embolism consequent to mechanical ventilation in ARDS. Ann Intern Med 110(9):699–703

    PubMed  CAS  Google Scholar 

  49. Chung A, Golden J, Fligiel S, Hogg JC (1983) Bronchopulmonary dysplasia in the adult. Am Rev Respir Dis 127: 117–120

    Google Scholar 

  50. Slavin G, Nunn JF, Crow J, Core C (1982) Bronchiolectasis - a complication of artificial ventilation. Brit Med J 285: 931–934

    Article  CAS  Google Scholar 

  51. Pesenti A, Pelosi P, Gattinoni L (1990) Lung mechanics in ARDS. In: Vincent JL (ed) Update in intensive care and emergency medicine, vol. 10. Springer, Berlin Heidelberg New York, pp 231–238

    Google Scholar 

  52. Dantzker DR, Brook CJ, Dehart P, Lynch JP, Weg JG (1979) Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 120: 1039–1052

    PubMed  CAS  Google Scholar 

  53. Gattinoni L, Mascheroni D, Basilco E, Foti G, Pesenti A, Avalli L (1987) Volume/pressure curve of total respiratory system in paralyzed patients: artefacts and correction factors. Intensive Care Med 13: 19–25

    Article  PubMed  CAS  Google Scholar 

  54. Corbridge TC, Wood LDH, Crawford GP, Chudoba MJ, Yanos J, Sznajder JI (1990) Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 142:311–315

    PubMed  CAS  Google Scholar 

  55. Matamis D, Lemaire F, Harf A, et al (1984) Total respiratory pressure volume curves in the adult respiratory distress syndrome. Chest 86: 58–66

    Article  PubMed  CAS  Google Scholar 

  56. Benito S, Lemaire F (1990) Pulmonary pressure-volume relationship in acute respiratory distress syndrome in adults: Role of positive end-expiratory pressure. J Crit Care 5:27–34

    Article  Google Scholar 

  57. Koltan M, Cattran CB, Kent G (1982) Oxygenation during high frequency-ventilation in two models of lung injury. Anesth Analg 61:323–327

    Google Scholar 

  58. Smith TC, Marini JJ (1988) Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. The effect of PEEP on Auto-PEEP. J Appl Physiol 65(4): 1488–1499

    PubMed  CAS  Google Scholar 

  59. Petrof BJ, Legare M, Goldberg P, Milic-Emili J, Gottfried SB (1990) Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 141:281–289

    PubMed  CAS  Google Scholar 

  60. Tuxen D (1989) Detrimental effects of positive end expiratory pressure during controlled mechanical ventilation of patients with severe airflow obstruction. Am Rev Respir Dis 140(1): 5–9

    Article  PubMed  CAS  Google Scholar 

  61. Otis AB, Fenn WO, Rahn H (1950) Mechanics of breathing in man. J Appl Physiol 2:592–607

    PubMed  CAS  Google Scholar 

  62. Marini JJ (1990) Lung mechanics in ARDS: Recent conceptual advances and implications for management. Clin Chest Med 11: 673–690

    PubMed  CAS  Google Scholar 

  63. Fuhrman BP, Smith-Wright DL, Venkataraman S, Orr RA, Howland DF (1989) Proximal mean airway pressure: A good estimator of mean alveolar pressure during continuous positive pressure breathing. Crit Care Med 17: 666–670

    Article  PubMed  CAS  Google Scholar 

  64. Hyatt RE (1983) Expiratory flow limitation. J Appl Physiol, Respirat Environ Excercise Physiol 55(1): 1–8

    CAS  Google Scholar 

  65. Boros SJ (1979) Variations in inspiratory/expiratory ratio and airway pressure waveform during mechanical ventilation. The significance of mean airway pressure. J Pediatr 94: 114–117

    Article  PubMed  CAS  Google Scholar 

  66. Boros SJ, Matalon SV, Ewald R, Leonard AS, Hunt CE (1977) The effect of independent variations in inspiratory-expiratory ratio and end-expiratory pressure during mechanical ventilation in hyaline membrane disease: the significance of mean airway pressure. J Pediatr 91:794–798

    Article  PubMed  CAS  Google Scholar 

  67. Herman S, Reynolds EOR (1973) Methods for improving oxygenation in infants mechanically ventilated for severe hyaline membrane disease. Arch Dis Child 48:612–617

    Article  PubMed  CAS  Google Scholar 

  68. Petersen GW, Baier H (1983) Incidence of pulmonary barotrauma in a medical ICU. Crit Care Med 11:67–69

    Article  PubMed  CAS  Google Scholar 

  69. Cournand A, Motley HL, Werko L, Richards DW (1948) Physiologic studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol 152: 162–174

    PubMed  CAS  Google Scholar 

  70. Guyton AC, Jones CE, Coleman TC (1973) Circulatory physiology. In: Cardiac output and its regulation. W. B. Saunders, Philadelphia, p 193

    Google Scholar 

  71. Sladen A, Laver MB, Pontoppidan H (1968) Pulmonary complications and water retention in prolonged mechanical ventilation. N Engl J Med 279:448–453

    Article  PubMed  CAS  Google Scholar 

  72. Kumar A, Falke K, Geffin B, et al (1970) Continuous positive pressure ventilation in acute respiratory failure. N Engl J Med 283: 1430–1436

    Article  PubMed  CAS  Google Scholar 

  73. Manquez JM, Douglas ME, Downs JB, et al (1979) Renal function and cardiovascular responses during positive airway pressure. Anesthesiology 50:393–398

    Article  Google Scholar 

  74. Connors AF, McCaffree DR, Gray BA (1981) Effect of inspiratory flow rate on gas exchange during mechanical ventilation. Am Rev Respir Dis 124:537–543

    PubMed  Google Scholar 

  75. Cole AGH, Weller SF, Sykes MK (1984) Inverse ratio ventilation compared with PEEP in adult respiratory failure. Intensive Care Med 10:227–232

    Article  PubMed  CAS  Google Scholar 

  76. Fuleihan SF, Wilson RS, Pontoppidan H (1976) Effect of mechanical ventilation with endinspiratory pause on blood-gas exchange. Anesth Analg 55(1):122–130

    Article  PubMed  CAS  Google Scholar 

  77. Toben BP, Lewandowski V (1988) Nontraditional and new ventilatory techniques. Crit Care Nurs Q 11: 12–28

    Google Scholar 

  78. Marcy TW, Marini JJ (1991) Inverse ratio ventilation in ARDS. Rationale and implementation. Chest (in press)

    Google Scholar 

  79. Tharatt RS, Allen RP, Albertson TE (1988) Pressure controlled inverse ratio ventilation in severe adult respiratory failure. Chest 94:755–762

    Article  Google Scholar 

  80. Kacmarek RM, Hess D (1990) Pressure controlled inverse ratio ventilation. Panacea or auto-PEEP? Respir Care 35: 945–948

    Google Scholar 

  81. Pesenti A, Marcolin R, Prato P, Borelli M, Riboni A, Gattinoni L (1985) Mean airway pressure vs. positive end-expiratory pressure during mechanical ventilation. Crit Care Med 13(1): 34–37

    Article  PubMed  CAS  Google Scholar 

  82. Marini JJ, Crooks PS, Truwit JD (1989) Determinants and limits of pressure preset ventilation: A mathematical model of pressure control. J Appl Physiol 67(3): 1081–1092

    PubMed  CAS  Google Scholar 

  83. Marini JJ (1990) Ventilatory management of chronic obstructive pulmonary disease. In: Cherniack NS (ed) Chronic obstructive pulmonary disease. W. B. Saunders, Philadelphia, pp 495–506

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marini, J.J. (1991). Controlled Ventilation: Targets, Hazards and Options. In: Marini, J.J., Roussos, C. (eds) Ventilatory Failure. Update in Intensive Care and Emergency Medicine, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84554-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84554-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84556-7

  • Online ISBN: 978-3-642-84554-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics