Advertisement

A Prospectus for the Fruitful Interaction Between Neuroethology and Neural Engineering

  • J.-P. Ewert
Part of the Research Notes in Neural Computing book series (NEURALCOMPUTING, volume 3)

Abstract

There are two important goals in neuroscience. One concerns the understanding of functions related to animal and human behavior — a research topic of neuroethology; the other, based on results of the former, seeks to develop strategies for the construction of so-called intelligent machines — the research field of neural engineering. The idea to date is not to build human’s cognition or toad’s pattern recognition into a technical device, rather to look for and to take advantage of certain task-oriented operational principles which, implemented by neuronal networks, are more economical and presumably even simpler than those an engineer faced with a comparable technical problem might have thought of. Selecting visually guided behaviors of toads, in this chapter we emphasize the need for models of brain functions, explain the advantage of the dialogue between experimentalists (neuroethologists) and modelers (computational neuroscientists), and point to the scope of questions and joint projects for the near future. The topics are: 1) Parallel distributed processing of visual signals; 2) implication of retinal on- and off-channels; 3) centrifugal control of retinal function; 4) forebrain-involved modulation of stimulus-response mediating tectal networks; 5) combinatorial control of motor pattern generating systems. Each topic addresses (a) neuroethological data, (b) current neuroethological projects, and (c) questions for neural engineering.

Keywords

Optic Tectum Command Neuron Common Toad Object Discrimination Visuomotor Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib MA (1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Handbook of physiology. The nervous system II. Motor control. American Physiological Society Bethesda MD, pp 1449-1480.Google Scholar
  2. Arbib MA (1982) Modelling neural mechanisms of visuomotor coordination in frog and toad. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Springer, Berlin Heidelberg New York, pp 342–370.Google Scholar
  3. Arbib MA (1987) Brains, machines, and mathematics. Springer, New York Berlin Heidelberg London Paris Tokyo.MATHGoogle Scholar
  4. Arbib MA (1989) The metaphorical brain 2: neural networks and beyond. J Wiley & Sons, New York Chichester Brisbane Toronto Singapore, 458 pp.MATHGoogle Scholar
  5. Arbib MA (1990) Neural computing: the challenge of the sixth generation. EDUCOM Bulletin 23:2–12.Google Scholar
  6. Arkin R (1989) Neuroscience in motion: the application of schema theory to mobile robotics. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 649–671.Google Scholar
  7. Barlow HB (1953) Summation and inhibition in the frog’s retina. J Physiol (Lond) 173:377–407.Google Scholar
  8. Betts B (1989) The T5 base modulator hypothesis: a dynamic model of T5 neuron function in toads. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York, pp 269–307.Google Scholar
  9. Blankenagel F (1931) Untersuchungen über die Großhirnfunktion von R temporaria. Zool Jahrb 49:271–322.Google Scholar
  10. Bodis-Wollner I (1990) Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. TINS 13:296–302.Google Scholar
  11. Brzoska J, Schneider H (1978) Modification of prey-catching behavior by learning in the common toad (Bufo b bufo L, Anura, Amphibia): changes in response to visual objects and effects of auditory stimuli. Behav Processes 3:125–136.CrossRefGoogle Scholar
  12. Burghagen H (1979) Der Einfluß von figuralen, visuellen Mustern auf das Beutefangverhalten verschiedener Anuren. PhD Thesis, Univ Kassel.Google Scholar
  13. Burghagen H, Ewert J-P (1982) Question of “head preference” in response to worm-like dummies during prey capture of toads Bufo bufo. Behav Processes 7:295–306.CrossRefGoogle Scholar
  14. Burghagen H, Ewert J-P (1983) Influence of the background for discriminating object motion from self-induced motion in toads Bufo bufo (L). J Comp Physiol 152:241–249.CrossRefGoogle Scholar
  15. Cervantes-Pérez F (1989) Schema theory as a common language to study sensori-motor coordination. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 421–450.Google Scholar
  16. Collett TS (1977) Stereopsis in toads. Nature 267:349–351.CrossRefGoogle Scholar
  17. Comer CM (1987) Sensorimotor functions: what is a command, that a code may yield it? A commentary. Behav Brain Sci 10:372.CrossRefGoogle Scholar
  18. Cott HB (1936) The effectiveness of protective adaptations in the hive-bee, illustrated by experiments on the feeding reactions, habit formation and memory of the common toad (Bufo bufo bufo). Proc Zool Soc (London) 1:113–133.Google Scholar
  19. Creutzfeldt OD (1983) Cortex cerebri. Springer-Verlag, Berlin Heidelberg New York, 484 pp.CrossRefGoogle Scholar
  20. Davis WJ, Kovac MP (1981) The command neuron and the organization of movement TINS 4:73–76.Google Scholar
  21. DiDomenico R, Eaton RC (1987) Toward a reformulation of the command concept. A commentary. Behav Brain Sci 10:374–375.CrossRefGoogle Scholar
  22. Eaton RC (1983) Is the Mauthner cell a vertebrate command neuron? A neuroethological perspective on an evolving concept. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 629–636.Google Scholar
  23. Ebbesson SOE (1976) Morphology of the spinal cord. In: Llinás L, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 679–706.CrossRefGoogle Scholar
  24. Eckmiller R, Hartmann G, Hauske G (1990) (eds) Parallel processing in neural systems and computers. North-Holland, Amsterdam New York Oxford Tokyo.MATHGoogle Scholar
  25. Edinger L (1908) Vorlesungen über den Bau der nervösen Zentralorgane des Menschen und der Tiere, Vol.2. Vogel, Leipzig.Google Scholar
  26. Ewert J-P (1967) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung der Erdkröte (Bufo bufo L). Z Vergl Physiol 57:263–298.CrossRefGoogle Scholar
  27. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61:41–70.Google Scholar
  28. Ewert J-P (1969) Quantitative Analyse von Reiz-Reaktions-Beziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L). Pflügers Arch 308:225–243.CrossRefGoogle Scholar
  29. Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer 230:34–42.CrossRefGoogle Scholar
  30. Ewert J-P (1980) Neuroethology: an introduction to the neurophysiological fundamentals of behavior. Springer, Berlin Heidelberg New York.Google Scholar
  31. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 247–416.Google Scholar
  32. Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10:337–405.CrossRefGoogle Scholar
  33. Ewert J-P, IWF (1982) Gestalt perception in the common toad. I) Innate prey recognition. Institut fur den Wissenschaftlichen Film IWF, Göttingen, Film No C 1430.Google Scholar
  34. Ewert J-P, Kehl W (1978) Configurational prey selection by individual experience in the toad Bufo bufo. J Comp Physiol 126:105–114.CrossRefGoogle Scholar
  35. Ewert J-P, Seelen W v (1974) Neurobiologie und System-Theorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik 14:167–183.CrossRefGoogle Scholar
  36. Ewert J-P, Wietersheim A v (1974) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92:149–160.CrossRefGoogle Scholar
  37. Ewert J-P, Arend B, Becker V, Borchers H-W (1979) Invariants in configurational prey selection by Bufo bufo (L). Brain Behav Evol 16:38–51.CrossRefGoogle Scholar
  38. Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for preycatching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 413–475.Google Scholar
  39. Ewert J-P, Schwippert WW, Beneke TW (1990a) Parallel distributed processing of configurai moving objects in the toad’s visual system. In: Eckmiller R, Hartmann G, Hauske G (ed) Parallel processing in neural systems and computers. North-Holland, Amsterdam New York Oxford Tokyo, pp 109–112.Google Scholar
  40. Ewert J-P, Framing EM, Schürg-Pfeiffer E, Weerasuriya A (1990b) Responses of medullary neurons to moving visual stimuli in the common toad. I) Characterization of medial reticular neurons by extracellular recording. J Comp Physiol, in press.Google Scholar
  41. Finkenstädt T (1989a) Stimulus-specific habituation in toads: 2DG studies and lesion experiments. In: Ewert J-P, Arbib MA (ed) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 767–797.Google Scholar
  42. Finkenstädt T (1989b) Visual associative learning: searching for behaviorally relevant brain structures in toads. In: Ewert J-P, Arbib MA (ed) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 799–832.Google Scholar
  43. Finkenstädt T, Ewert J-P (1983) Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. J Comp Physiol 153:99–110.CrossRefGoogle Scholar
  44. Finkenstädt T, Ewert J-P (1988a) Stimulus-specific long-term habituation of visually guided orienting behavior toward prey in toads: a 14C-2DG study. J Comp Physiol 163:1–11.CrossRefGoogle Scholar
  45. Finkenstädt T, Ewert J-P (1988b) Effects of visual associative conditioning on behavior and cerebral metabolic activity in toads. Naturwissenschaften 75:95–97.CrossRefGoogle Scholar
  46. Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of 14C-2DG autoradiographs. J Comp Physiol 156:433–445.CrossRefGoogle Scholar
  47. Finkenstädt T, Adler NT, Allen TO, Ewert J-P (1986) Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: a 14C-2DG study. J Comp Physiol 158:457–467.CrossRefGoogle Scholar
  48. Fite KV, Scalia F (1976) Central visual pathways in the frog. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York San Francisco London, pp 87–118.Google Scholar
  49. Fritzsch B, Himstedt W (1981) Pretectal neurons project to the salamander retina. Neurosci Lett 24:13–17.CrossRefGoogle Scholar
  50. Glagow M (1990) Der Einfluß von Apomorphin auf die visuelle Erregbarkeit im rezeptiven Feld retinaler Klasse-2-Neuronen der Erdkröte Bufo bufo spinosus L. Staats-Exam Thesis, Univ Kassel.Google Scholar
  51. Grobstein P, Corner C, Kostyk SK (1983) Frog prey capture behavior: between sensory maps and directed motor output In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 331–347.Google Scholar
  52. Grüsser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás L, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 297–385.CrossRefGoogle Scholar
  53. Guthrie DM (1987) (ed) Aims and methods in neuroethology. Manchester Univ Press, Manchester.Google Scholar
  54. Halpern M (1972) Some connections of the telencephalon of the frog R pipiens. Brain Behav Evol 6:42–68.CrossRefGoogle Scholar
  55. Holst E v, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37:464–476.CrossRefGoogle Scholar
  56. Ingle DJ (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York San Francisco London.Google Scholar
  57. Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 177–226.Google Scholar
  58. Ingle DJ, McKinley D (1978) Effects of stimulus configuration on elicited prey catching by the marine toad (Bufo marinus). Anim Behav 26:885–891.CrossRefGoogle Scholar
  59. Jung R (1953) Einführung in die allgemeine Neurophysiologie. In: Gauer OH, Kramer K, Jung R (eds) Physiologie des Menschen 10. Allgemeine Neurophysiologie. Urban & Schwarzenberg, München Berlin Wien, pp 1–31.Google Scholar
  60. Kicliter E, Ebbesson SOE (1976) Organization of the “nonolfactory” telencephalon. In: Llinás L, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 946–972.CrossRefGoogle Scholar
  61. Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1:3–39.CrossRefGoogle Scholar
  62. Lara R (1989) Learning and memory in the toad’s prey/predator recognition system: a neural model. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 833–855.Google Scholar
  63. Lara R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Biol Cybern 51:223–237.CrossRefGoogle Scholar
  64. Lara R, Cervantes F, Arbib MA (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Springer, Berlin Heidelberg New York, pp 371–393.Google Scholar
  65. Lázár G (1971) The projection of the retinal quadrants on the optic centers in the frog: a terminal degeneration study. Acta Morph Acad Sci Hung 19:325–334.Google Scholar
  66. Lázár G (1989) Cellular architecture and connectivity of the frog’s optic tectum and pretectum. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 175–199.Google Scholar
  67. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Engin 47:1940–1951.CrossRefGoogle Scholar
  68. Mallot HA, Seelen W v (1989) Why cortices? Neural networks for visual information processing. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 357–382.Google Scholar
  69. Manteuffel G (1989) Compensation of visual background motion in salamanders. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 311–340.Google Scholar
  70. Mao Tse Tung (1935) Worte des Vorsitzenden. Verlag für fremdsprachige Literatur (German transl. Peking 1971).Google Scholar
  71. Matsushima T, Satou M, Ueda K (1989) Medullary reticukr neurons in the Japanese toad: morphology and excitatory inputs from the optic tectum. J Comp Physiol A 166:7–22.CrossRefGoogle Scholar
  72. Maturana HR (1958) Efferent fibers in the optic nerve of the toad (Bufo bufo L). J Anat 92:21–26.Google Scholar
  73. Neary T, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213:262–278.CrossRefGoogle Scholar
  74. Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencenphaloa Plenum Press, New York London, pp 203–255.CrossRefGoogle Scholar
  75. Paillard J (1987) Cognitive versus sensorimotor encoding of spatial information. In: Ellen P, Thinus-Blanc C (eds) Cognitive processes and spatial orientation in animal and man Vol IL Martinus Nijhoff Publ, Dordrecht.Google Scholar
  76. Ploog D, Gottwald P (1974) Verhaltensforschung: Instinkt, Lernen, Hirnfunktion. Urban & Schwarzenberg, München Rubin E (1915) Synsoplevede Figurer. Glyden dalske, Copenhagen.Google Scholar
  77. Rubinson E (1968) Projections of the tectum opticum of the frog. Brain Behav Evol 1:529–561.CrossRefGoogle Scholar
  78. Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad Bufo bufo L. J Comp Physiol A 157:739–748.CrossRefGoogle Scholar
  79. Schmidhuber J (1990) “Reinforcement” — Lernen und adaptive Steuerung: Ein Überblick. Nachrichten Neuronale Netze 2:2–4.Google Scholar
  80. Schrader MEG (1887) Zur Physiologie des Froschgehirns. Pflügers Arch 41:75–90.CrossRefGoogle Scholar
  81. Schürg-Pfeiffer E (1989) Behavior-correlated properties of tectal neurons in freely moving toads. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 451–480.Google Scholar
  82. Schürg-Pfeiffer E, Spreckelsen C, Ewert J-P (1990) Tectal small-field neurons recorded in prey-catching toads are sensitive to the real object size. Ann ENA meeting, Oxford Press.Google Scholar
  83. Schwippert WW, Beneke TW, Ewert J-P (1990) Responses of medullary neurons to moving visual stimuli in the common toad. II) An intracellular recording and cobalt-lysine labeling study. J Comp Physiol, in press.Google Scholar
  84. Stevens KH (1987) Implicit versus explicit computation. A commentary. Behav Brain Sci 10:387–388.CrossRefGoogle Scholar
  85. Tönnies JF (1949) Die Erregungssteuerung im Zentralnervensystem. Erregungsfokus der Synapse und Rückmeldung als Funktionsprinzipien. Arch Psychiatr 182:478–535.CrossRefGoogle Scholar
  86. Töth P, Csank G, Lázár G (1985) Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculenta. A tracing study using cobalt-lysine complex. J Hirnforsch 26:365–383.Google Scholar
  87. Traud R (1983) Einfluß von visuellen Reizmustern auf die juvenile Erdkröte (Bufo bufo L). PhD Thesis, Univ of Kassel.Google Scholar
  88. Tsai H-J, Ewert J-P (1987) Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant “position indicators.” J Comp Physiol 161:295–304.CrossRefGoogle Scholar
  89. Tsai H-J, Ewert J-P (1988) Influence of stationary and moving textured backgrounds on the response of visual neurons in toads (Bufo bufo L). Brain Behav Evol 32:27–38.CrossRefGoogle Scholar
  90. Uchiyama H (1989) Centrifugal pathways to the retina: influence of the optic tectum. Vis Neurosci (submitted).Google Scholar
  91. Uchiyama H, Sakamoto N, Ito H (1981) A retinopetal nucleus in the preoptic area in a teleost Navodon modestus. Brain Res 222:119–124.CrossRefGoogle Scholar
  92. Uchiyama H, Reh TA, Stell WK (1988) Immunocytochemical and morphological evidence for a retinopetal projection in anuran amphibians. J Comp Neurol 274:48–59.CrossRefGoogle Scholar
  93. Walker S (1983) Animal thought Routledge & Kegan Paul, London Boston Melbourne Henley.Google Scholar
  94. Weerasuriya A (1989) In search of the motor pattern generator for snapping in toads. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York, pp 589–614.Google Scholar
  95. Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad’s optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J Comp Physiol 144:429–434.CrossRefGoogle Scholar
  96. Wiersma CAG, Ikeda K (1964) Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp Biochem Physiol 12:509–525.CrossRefGoogle Scholar
  97. Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173:219–229.CrossRefGoogle Scholar
  98. Wilczynski W, Northcutt RG (1983a) Connections of the bullfrog striatum: afferent organization. J Comp Neurol 214:321–332.CrossRefGoogle Scholar
  99. Wilczynski W, Northcutt RG (1983b) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214:333–343.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J.-P. Ewert
    • 1
  1. 1.Neurobiology, FB 19University of KasselKasselGermany

Personalised recommendations