Skip to main content

Striato-Pretecto-Tectal Connections: A Substrate for Arousing the Toad’s Response to Prey

  • Chapter
Visual Structures and Integrated Functions

Part of the book series: Research Notes in Neural Computing ((NEURALCOMPUTING,volume 3))

Abstract

Earlier studies have shown in toads that lesions to certain pretectal nuclei lead to hyperactive prey-catching in response to any moving visual object. These and other investigations suggest that in toads the discrimination of moving visual objects for prey recognition depends on inhibitory connections from pretectum to optic tectum, with both structures obtaining retinal inputs. The question thus arose how pretectum is controlled. In the present study, we examined intracellular responses of pretectal cells to electrical pulses applied to the ipsilateral ventral striatum, vSTR, or to the lateral forebrain bundle, LFB, in which striatal axons project to pretectal nuclei. The main results can be summarized in four points: (i) Pretectal neurons receive inhibitory and/or excitatory postsynaptic inputs evoked by electrical stimulation of LFB or by visual stimuli. The relatively greater percentage of purely inhibitory inputs and the occurrence of latencies between 2 and 3 ms are conspicuous. (ii) Pretectal neurons receive LFB-mediated information also via polysynaptic connections, probably involving an entopeduncular relay. (iii) Electrical stimulation of the vSTR elicits postsynaptic inhibitory or sequential excitatory/inhibitory potentials in pretectal cells; the fastest input (2 ms) was inhibitory. (iv) The fact that striatal stimulation leads to inhibitory inputs in pretectal neurons is consistent with the concept of a “disinhibitory” striato-pretectotectal function suitable to prime or arouse the tectal prey-catching releasing system. This is also consistent with studies showing visual “prey neglect” after ablation of vSTR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. TINS 13:277–280.

    Google Scholar 

  • Diebschlag E (1935) Zur Kenntnis der Großhirnfunktionen einiger Urodelen und Anuren. Z Vergl Physiol 21:343–394.

    Google Scholar 

  • Doty RW (1987) Has the gready toad lost its soul, and if so, what was it? A commentary. Behav Brain Sci 10:375.

    Article  Google Scholar 

  • Ewert J-P (1967) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung der Erdkröte (Bufo bufo L). Z Vergl Physiol 57:263–298.

    Article  Google Scholar 

  • Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61:41–70.

    Google Scholar 

  • Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer 230:34–42.

    Article  Google Scholar 

  • Ewert J-P (1985) The Nico Tinbergen lecture 1983: concepts in vertebrate neuroethology. Anim Behav 33:1–29.

    Article  Google Scholar 

  • Ewert J-P (1987) Neuroethology: toward a functional analysis of stimulus-response mediating and modulating neural circuitries. In: Ellen P, Thinus-Blanc C (eds) Cognitive processes and spatial orientation in animal and man, Vol I. Martinus Nijhoff, Dordrecht, pp 177–200.

    Google Scholar 

  • Ewert J-P (1989) The release of visual behavior in toads: stages of parallel/hierarchical information processing. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 39–120.

    Google Scholar 

  • Ewert J-P, Wietersheim A v (1974a) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physiol 92:131–148.

    Article  Google Scholar 

  • Ewert J-P, Wietersheim A v (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92:149–160.

    Article  Google Scholar 

  • Ewert J-P, Speckhardt I, Amelang W (1970) Visuelle Inhibition und Exzitation im Beutefangverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 68:84–110.

    Article  Google Scholar 

  • Ewert J-P, Schwippert WW, Beneke TW (1990) Parallel distributed processing of configurai moving objects in the toad’s visual system. In: Eckmiller R, Hartmann G, Hauske G (eds) Parallel processing in neural systems and computers. North-Holland, Amsterdam New York Oxford Tokyo, pp 109–112.

    Google Scholar 

  • Finkenstädt T (1989) Visual associative learning: searching for behaviorally relevant brain structures in toads. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 799–832.

    Google Scholar 

  • Finkenstädt T, Ewert J-P (1983) Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. J Comp Physiol 153:99–110.

    Article  Google Scholar 

  • Hikosaka O (1990) Role of basal ganglia in initiation of voluntary movements. In: Arbib MA, Amari S (eds) Dynamic interactions in neural networks: models and data. Springer, New York, Berlin Heidelberg London Paris Tokyo, pp 153–167.

    Google Scholar 

  • Hinde RA (1954) Changes in responsiveness to a constant stimulus. Behaviour 2:41–54.

    Google Scholar 

  • Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 177–226.

    Google Scholar 

  • Ingle DJ, Hoff S v (1988) Neural mechanisms of short-term memory in frogs. Soc Neurosci Abstr 14:692.

    Google Scholar 

  • Katte O, Hoffmann K-P (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). J Comp Physiol 140:53–57.

    Article  Google Scholar 

  • Matsumoto N (1989) Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 201–222.

    Google Scholar 

  • Matsumoto N, Schwippert WW, Beneke TW, Ewert J-P (1990) Forebrain-mediated inhibition and disinhibition of visual prey-catching behavior in toads: intracellular study of striato-pretectal information transfer (submitted).

    Google Scholar 

  • Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencenphalon. Plenum Press, New York London, pp 203–255.

    Chapter  Google Scholar 

  • Patton P, Grobstein P (1986) Possible striatal involvement in prey orienting behaviour in the frog. Soc Neurosci Abstr 10:61.

    Google Scholar 

  • Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. TINS 7:320–325.

    Google Scholar 

  • Schürg-Pfeiffer E (1989) Behavior-correlated properties of tectal neurons in freely moving toads. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 451–480.

    Google Scholar 

  • Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434.

    Chapter  Google Scholar 

  • Wilczynski W, Northcutt RG (1983a) Connections of the bullfrog striatum: afferent organization. J Comp Neurol 214:321–332.

    Article  Google Scholar 

  • Wilczynski W, Northcutt RG (1983b) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214:333–343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ewert, JP., Matsumoto, N., Schwippert, W.W., Beneke, T.W. (1991). Striato-Pretecto-Tectal Connections: A Substrate for Arousing the Toad’s Response to Prey. In: Arbib, M.A., Ewert, JP. (eds) Visual Structures and Integrated Functions. Research Notes in Neural Computing, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84545-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84545-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54241-4

  • Online ISBN: 978-3-642-84545-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics