Striato-Pretecto-Tectal Connections: A Substrate for Arousing the Toad’s Response to Prey

  • J.-P. Ewert
  • N. Matsumoto
  • W. W. Schwippert
  • T. W. Beneke
Part of the Research Notes in Neural Computing book series (NEURALCOMPUTING, volume 3)


Earlier studies have shown in toads that lesions to certain pretectal nuclei lead to hyperactive prey-catching in response to any moving visual object. These and other investigations suggest that in toads the discrimination of moving visual objects for prey recognition depends on inhibitory connections from pretectum to optic tectum, with both structures obtaining retinal inputs. The question thus arose how pretectum is controlled. In the present study, we examined intracellular responses of pretectal cells to electrical pulses applied to the ipsilateral ventral striatum, vSTR, or to the lateral forebrain bundle, LFB, in which striatal axons project to pretectal nuclei. The main results can be summarized in four points: (i) Pretectal neurons receive inhibitory and/or excitatory postsynaptic inputs evoked by electrical stimulation of LFB or by visual stimuli. The relatively greater percentage of purely inhibitory inputs and the occurrence of latencies between 2 and 3 ms are conspicuous. (ii) Pretectal neurons receive LFB-mediated information also via polysynaptic connections, probably involving an entopeduncular relay. (iii) Electrical stimulation of the vSTR elicits postsynaptic inhibitory or sequential excitatory/inhibitory potentials in pretectal cells; the fastest input (2 ms) was inhibitory. (iv) The fact that striatal stimulation leads to inhibitory inputs in pretectal neurons is consistent with the concept of a “disinhibitory” striato-pretectotectal function suitable to prime or arouse the tectal prey-catching releasing system. This is also consistent with studies showing visual “prey neglect” after ablation of vSTR.


Electrical Stimulation Striatal Neuron Inhibitory Input Optic Tectum Tectal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. TINS 13:277–280.Google Scholar
  2. Diebschlag E (1935) Zur Kenntnis der Großhirnfunktionen einiger Urodelen und Anuren. Z Vergl Physiol 21:343–394.Google Scholar
  3. Doty RW (1987) Has the gready toad lost its soul, and if so, what was it? A commentary. Behav Brain Sci 10:375.CrossRefGoogle Scholar
  4. Ewert J-P (1967) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung der Erdkröte (Bufo bufo L). Z Vergl Physiol 57:263–298.CrossRefGoogle Scholar
  5. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61:41–70.Google Scholar
  6. Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer 230:34–42.CrossRefGoogle Scholar
  7. Ewert J-P (1985) The Nico Tinbergen lecture 1983: concepts in vertebrate neuroethology. Anim Behav 33:1–29.CrossRefGoogle Scholar
  8. Ewert J-P (1987) Neuroethology: toward a functional analysis of stimulus-response mediating and modulating neural circuitries. In: Ellen P, Thinus-Blanc C (eds) Cognitive processes and spatial orientation in animal and man, Vol I. Martinus Nijhoff, Dordrecht, pp 177–200.Google Scholar
  9. Ewert J-P (1989) The release of visual behavior in toads: stages of parallel/hierarchical information processing. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 39–120.Google Scholar
  10. Ewert J-P, Wietersheim A v (1974a) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physiol 92:131–148.CrossRefGoogle Scholar
  11. Ewert J-P, Wietersheim A v (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92:149–160.CrossRefGoogle Scholar
  12. Ewert J-P, Speckhardt I, Amelang W (1970) Visuelle Inhibition und Exzitation im Beutefangverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 68:84–110.CrossRefGoogle Scholar
  13. Ewert J-P, Schwippert WW, Beneke TW (1990) Parallel distributed processing of configurai moving objects in the toad’s visual system. In: Eckmiller R, Hartmann G, Hauske G (eds) Parallel processing in neural systems and computers. North-Holland, Amsterdam New York Oxford Tokyo, pp 109–112.Google Scholar
  14. Finkenstädt T (1989) Visual associative learning: searching for behaviorally relevant brain structures in toads. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 799–832.Google Scholar
  15. Finkenstädt T, Ewert J-P (1983) Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. J Comp Physiol 153:99–110.CrossRefGoogle Scholar
  16. Hikosaka O (1990) Role of basal ganglia in initiation of voluntary movements. In: Arbib MA, Amari S (eds) Dynamic interactions in neural networks: models and data. Springer, New York, Berlin Heidelberg London Paris Tokyo, pp 153–167.Google Scholar
  17. Hinde RA (1954) Changes in responsiveness to a constant stimulus. Behaviour 2:41–54.Google Scholar
  18. Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 177–226.Google Scholar
  19. Ingle DJ, Hoff S v (1988) Neural mechanisms of short-term memory in frogs. Soc Neurosci Abstr 14:692.Google Scholar
  20. Katte O, Hoffmann K-P (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). J Comp Physiol 140:53–57.CrossRefGoogle Scholar
  21. Matsumoto N (1989) Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 201–222.Google Scholar
  22. Matsumoto N, Schwippert WW, Beneke TW, Ewert J-P (1990) Forebrain-mediated inhibition and disinhibition of visual prey-catching behavior in toads: intracellular study of striato-pretectal information transfer (submitted).Google Scholar
  23. Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencenphalon. Plenum Press, New York London, pp 203–255.CrossRefGoogle Scholar
  24. Patton P, Grobstein P (1986) Possible striatal involvement in prey orienting behaviour in the frog. Soc Neurosci Abstr 10:61.Google Scholar
  25. Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. TINS 7:320–325.Google Scholar
  26. Schürg-Pfeiffer E (1989) Behavior-correlated properties of tectal neurons in freely moving toads. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 451–480.Google Scholar
  27. Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434.CrossRefGoogle Scholar
  28. Wilczynski W, Northcutt RG (1983a) Connections of the bullfrog striatum: afferent organization. J Comp Neurol 214:321–332.CrossRefGoogle Scholar
  29. Wilczynski W, Northcutt RG (1983b) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214:333–343.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J.-P. Ewert
    • 1
  • N. Matsumoto
    • 2
  • W. W. Schwippert
    • 1
  • T. W. Beneke
    • 1
  1. 1.Neurobiology, FB 19University of KasselKasselGermany
  2. 2.Department of Biophysical Engineering Faculty of Engineering ScienceOsaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations