Skip to main content

Part of the book series: Tropon-Symposium VI ((BAYERZNS,volume 6))

  • 67 Accesses

Zusammenfassung

Demenz wird als Abnahme erworbener intellektueller Fähigkeiten (Jaspers 1959), Intelligenz als „das Ganze der Denkanlagen und Denkvollzüge mit ihrer Anwendung auf die praktischen und theoretischen Aufgaben des Lebens“ verstanden (Schneider 1959). Einschränkungen intellektueller Fähigkeiten zeigen sich u. a. in einer Abnahme der Lern- und Gedächtnisleistung oder der Kognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Barkulis SS, Geiger A, Kawikata Y, Aguilar V (1960) A study of incorporation of 14C derived from glucose into free amino acids of the brain cortex. J Neurochem 5: 339–348

    Article  PubMed  CAS  Google Scholar 

  • Blass JP, Gibson GE (1979) Carbohydrates and acetylcholine synthesis: implications for cognitive disorders. In: Davis KL, Berger PA (eds) Brain acetylcholine and neuropsychiatric disease. Plenum Press, New York, pp 89–101

    Google Scholar 

  • Bowen DM, White P, Spillane JA et al. (1979) Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet 1:11–14

    PubMed  CAS  Google Scholar 

  • Cohen PJ, Alexander SC, Smith TC, Reivich M, Wollman H (1967) Effects of hypoxia and normo-carbia on cerebral blood flow and metabolism in conscious man. J Appl Physiol 23:183–189

    PubMed  CAS  Google Scholar 

  • Connor JA, Wadman WJ, Hockberger PE, Wong RKS (1988) Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 240:649–653

    Article  PubMed  CAS  Google Scholar 

  • Deutsch JA (1973) The cholinergic synapse and the site of memory. In: Deutsch JA (ed) The physiological basis of memory. Academic Press, New York, pp 59–76

    Google Scholar 

  • Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9: 2–19

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA, Liss L, Horrocks LA (1988) Neurochemical aspects of Alzheimer’s disease: Involvement of membrane phospholipids. Metabol Brain Dis 3:19–35

    Article  CAS  Google Scholar 

  • Freed WY, Michaelis EK (1976) Effect of intraventricular glutamic acid on the acquisition, performance and extinction of an operant response and on general activity. Psychopharmacology 50: 293–299

    Article  PubMed  CAS  Google Scholar 

  • Freed WY, Wyatt RJ (1981) Impairment of instrumental learning in rats by glutamic acid diethylester. Pharmacol Biochem Behav 14:223–226

    Article  PubMed  CAS  Google Scholar 

  • Gibbs EL, Lennox WG, Nims LF, Gibbs FA (1942) Arterial and cerebral venous blood. Arterial-venous differences in man. J Biol Chem 144:325–332

    CAS  Google Scholar 

  • Gibson GE, Blass JP (1976) Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia. J Neurochem 27:37–42

    Article  PubMed  CAS  Google Scholar 

  • Gold PE, Zornetzer SF (1983) The mnemon and juices: Neuromodulation of memory processes. Behav Neural Biol 38:151–189

    Article  PubMed  CAS  Google Scholar 

  • Gottstein U, Bernsmeier A, Sedlmeyer I (1963) Der Kohlenhydratstoffwechsel des menschlichen Gehirns. I. Untersuchungen mit substratspezifischen enzymatischen Methoden bei normaler Hirndurchblutung. Klin Wochenschr 41:943–948

    CAS  Google Scholar 

  • Harrefeld A van, Fifkova E (1974) Involvement of glutamate in memory formation. Brain Res 81: 455–467

    Article  Google Scholar 

  • Hoyer S (1970) Der Aminosäurenstoffwechsel des normalen menschlichen Gehirns. Klin Wochenschr 48:1239–1243

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (1986) Senile dementia and Alzheimer’s disease. Brain blood flow and metabolism. Prog Neuropsychopharmacol Biol Psychiatry 10:447–478

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (1990) Brain glucose and energy metabolism during normal aging. Aging 2:245–258

    PubMed  CAS  Google Scholar 

  • Hoyer S (1991) Energy metabolism in cortex and hippocampus during aging, ischemia and dementia. In: Hartmann A, Kuschinsky W, Hoyer S (eds) Cerebral ischemia and dementia. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Hoyer S, Nitsch R (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm 75:227–232

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Oesterreich K, Wagner O (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J Neurol 235:143–148

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Nitsch R, Oesterreich K (1990) Ammonia is endogenously generated in the brain in the presence of presumed and verified dementia of Alzheimer type. Neurosci Lett 117:358–362

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Nitsch R, Oesterreich K (1991) Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: A cross-sectional comparison against advanced late-onset and incipient early-onset case. J Neural Transm (PD-Section) 3:1–14

    Article  CAS  Google Scholar 

  • Jahr CE, Stevens CF (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325:522–525

    Article  PubMed  CAS  Google Scholar 

  • Jaspers K (1959) Allgemeine Psychopathologie, 7. Aufl. Springer, Berlin Göttingen Heidelberg, S 146–186

    Google Scholar 

  • Lipton P, Whittingham TS (1982) Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea pig hippocampus. J Physiol 325:51–65

    PubMed  CAS  Google Scholar 

  • Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypthesis. Science 224: 1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Mattson P (1990) Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 2:105–117

    Article  Google Scholar 

  • McCabe BJ, Horn G (1988) Learning and memory: Regional changes in N-methyl-D-aspartate receptors in the chick brain after imprinting. Proc Natl Acad Sci USA 85:2849–2853

    Article  PubMed  CAS  Google Scholar 

  • Myhrer T, Iversen EG, Fonnum F (1989) Impaired reference memory and reduced glutamatergic activity in rats with temporo-entorhinal connections disrupted. Exp Brain Res 77: 499–506

    Article  PubMed  CAS  Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central venous system. Exp Brain Res 14:61–76

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Tomlinson BE, Blessed G, Gibson PH (1980) Coenzyme A acetylating enzymes in Alzheimer’s disease: possible cholinergic „compartment“ of pyruvate dehydrogenase. Neurosci Lett 18:105–110

    Article  PubMed  CAS  Google Scholar 

  • Procter AW, Palmer AM, Francis PT et al. (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J Neurochem 50:790–802

    Article  PubMed  CAS  Google Scholar 

  • Sacks W (1965) Cerebral metabolism of doubly labeled glucose in human in vivo. J Appl Physiol 20: 117–130

    PubMed  CAS  Google Scholar 

  • Sahai S, Buselmaier W, Brussmann A (1985) 2-amino-4-phosphobutyric acid selectively blocks two way avoidance learning. Neurosci Lett 56:137–142

    Article  PubMed  CAS  Google Scholar 

  • Schneider K (1959) Klinische Psychopathologie, 5. Aufl. Thieme, Stuttgart, S 63

    Google Scholar 

  • Siesjö BK (1978) Brain energy metabolism, Chapters 1 and 6. Wiley, Chichester

    Google Scholar 

  • Siesjö BK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1: 155–185

    Article  PubMed  Google Scholar 

  • Sims NR, Bowen DM, Allen SJ, Smith CCT, Neary D, Thomas DJ, Davison AN (1983a) Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 40:503–509

    Article  PubMed  CAS  Google Scholar 

  • Sims NR, Bowen DM, Neary D, Davison AN (1983b) Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14CO2 from (U-14C) glucose in vitro in human neocortex. J Neurochem 41:1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Smith G (1988) Animal models of Alzheimer’s disease: experimental cholinergic denervation. Brain Res Rev 13:103–118

    Article  Google Scholar 

  • Spencer DG, Lal H (1983) Effects of anticholinergic drugs on learning and memory. Drug Dev Res 3:489–502

    Article  CAS  Google Scholar 

  • Walsh T, Tilson H, DeHaven D, Mailman R, Fisher A, Hanin I (1984) AF 64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex and produces long-term passive avoidance and radial-arm maze deficits in the rat. Brain Res 321:91–102

    Article  PubMed  CAS  Google Scholar 

  • Wenk GL (1989) An hypothesis on the role of glucose in the mechanism of action of cognitive enhancers. Psychopharmacology 99:431–438

    Article  PubMed  CAS  Google Scholar 

  • Wenk GL, Grey CM, Ingram DK, Spangler EL, Olton DS (1989) Retention of maze performance inversely correlates with NMDA receptor number in hippocampus and frontal neocortex in rat. Behav Neurosci 103:688–690

    Article  PubMed  CAS  Google Scholar 

  • Westerberg E, Deshpande JK, Wieloch T (1987) Regional differences in arachidonic acid release in rat hippocampal CA1 and CA3 regions during cerebral ischemia. J Cereb Blood Flow Metab 7: 189–192

    Article  PubMed  CAS  Google Scholar 

  • Whittingham TS, Lipton P (1984) Cerebral synaptic transmission during anoxia is protected by creatine. J Neurochem 37:1618–1621

    Article  Google Scholar 

  • Wieloch T (1986) Endogenous excitotoxins as possible mediators of ischemic and hypoglycemic brain damage. Adv Exp Med Biol 203:127–138

    PubMed  CAS  Google Scholar 

  • Wong KL, Tyce GM (1983) Glucose and amino acid metabolism in rat brain during sustained hypoglycemia. Neurochem Res 8:401–415

    Article  PubMed  CAS  Google Scholar 

  • Zanotto L, Heinemann U (1983) Aspartate and glutamate induced reactions in extracellular free calcium and sodium concentration in area CA1 of „in vitro“ hippocampal slices of rats. Neurosci Lett 35:79–84

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoyer, S. (1991). Neurotransmitter und Demenz. In: Beckmann, H., Osterheider, M. (eds) Neurotransmitter und psychische Erkrankungen. Tropon-Symposium VI, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84544-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84544-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54220-9

  • Online ISBN: 978-3-642-84544-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics