Skip to main content

Stability Investigation of Long-Span Bridges Using Indical Functions with Oscillatory Terms

  • Conference paper
Stochastic Structural Dynamics 2
  • 129 Accesses

Abstract

When wind flow passes around a structure, it generates in general, moment, lift and drag loads on the structure. If the shape of the structure is unstreamlined, which is the case with most bridge decks, then flow separation occurs, and organized vortices are shed. Sometimes the organized vortices are accompanied by smaller scale vortices. These vortices generate random pressure fluctuations in the wake, causing the structure, to move. In turn, the structure’s motion generates motion-dependent loads, referred to as self-excited loads. On the other hand, turbulence that generally exists in the oncoming wind generates additional external excitations which are independent of the structural motion and are referred to as the buffeting loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. NACA Report No. 496, reprinted in AIAA selected reprints on Flutter, 1969 by I. E. Garrick, 22–31.

    Google Scholar 

  2. Bissplinghoff, R. L.; Ashley, H.; Halfman, R. L.: Aeroelasticity. Addison - Weseley, 1957.

    Google Scholar 

  3. Sabzevari, A.; Scanlan, R. H.: Aerodynamic instability of suspension bridges. J. Eng. Mech. Div. ASCE 94 (1968) EM2, 489–519.

    Google Scholar 

  4. Scanlan, R. H.; Tomko, J. J.: Airfoil and bridge deck flutter derivatives. J. Eng. Mech. Div. ASCE 97 (1971) EM2 1717–1737.

    Google Scholar 

  5. Scanlan, R. H.: State of the art methods for culculating flutter, vortex-induced and buffeting response bridge structures, Rept. FHWA/RD-80/050, Apr. 1980, Final Report.

    Google Scholar 

  6. Scanlan, R. H.; Beliveau, J. G.; Budlong, K.S.: Indicial aerodynamic functions for bridge decks. J. Engng. Mech. ASCE 100 (1974) EM4 657–672.

    Google Scholar 

  7. Scanlan, R. H.: Role of indicial functions in the buffeting analysis of bridges. J. of Struc. Eng. Div. ASCE 110 (1984) 1433–1446.

    Article  Google Scholar 

  8. Lin, Y. K.: Motion of suspension bridge in turbulent wind. J. Eng. Mech. Div. ASCE 105 (1979) 921–932.

    Google Scholar 

  9. Lin, Y.K.; Ariaratnam, S. T.: Stability of bridge motion in turbulent winds. J. of Struc. Mech. 8 (1980) 1–15.

    Article  MathSciNet  Google Scholar 

  10. Bucher, C. G.; Lin, Y. K.: Stochastic stability of bridges considering coupled modes. J. Eng. Mech. ASCE 114 (1988) 2055–2071.

    Article  Google Scholar 

  11. Bucher, C. G.; Lin, Y. K.: Stochastic stability of bridges considering coupled modes II. J. Eng. Mech. ASCE 115 (1989) 384–400.

    Article  Google Scholar 

  12. Ito, K.: On a formula concerning stochastic differentials. Nagoya Math. Journal, Japan 3 (1951) 55–65.

    MATH  Google Scholar 

  13. Simiu, E.; Scanlan, R. H.: Wind effects on structures. John Wiley & Sons, New York 1978.

    Google Scholar 

  14. Wagner, H.: Dynamicher Auftrieb fon tragflugel, Zeitschrift fĂĽr angewandte Mathematik und Mechanik, Bd. 5 (1925) 17.

    MATH  Google Scholar 

  15. Jones, R. T.: The unsteady lift of a wing of finite aspect ratio, NACA No. 681, 1940.

    Google Scholar 

  16. Huston, D. R.: The effects of upstream gusting on the aero-elastic behavior of long span bridges. Ph.D. Dissertation, Dept. of Civil Eng., Princeton Univ., May 1986.

    Google Scholar 

  17. Shiraishi, N.; Matsumoto, M.; Mashimo, H.; Honda, A.; On vortex induced oscillation of bluff bodies. Reprint from the Memoirs of the Faculty of Eng., Kyoto Univ., Vol. XLV part 4, Oct. 198 3, Kyoto Japan.

    Google Scholar 

  18. Shiraishi, N.; Matsumoto, M.: On classification of vortex-induced oscillation and its application for bridge structures. J. Wind Eng. and Ind. Aerod., (1983) 419–430.

    Google Scholar 

  19. Beliveau, J. G.; Vaicaitis, R.; Shinozuka, M.: Motion of suspension bridge subject to wind loads. J. of Struc. Div. ASCE 103 (1976) ST6 1189–1205.

    Google Scholar 

  20. Tsiates, G.: Random vibration of nonlinear, parametrically excited systems. Ph.D. Dissertation, Case Western Reserve University, 1984.

    Google Scholar 

  21. Sarkar, P. P.: Effect of wind turbulence on the stability of long span bridges. MSc Thesis, Wash. State Univ., Dec. 1986.

    Google Scholar 

  22. Stratonovich, R. L.: Topics in the theory of random noise, Vol. 1, Translation by R. A. Silverman, Gordon & Breach, 1963.

    Google Scholar 

  23. Wong, E.; Zakai, M.: On the relation between ordinary and stochastic equations. International Journal of Eng. Science (1965) 213–229.

    Google Scholar 

  24. Sternberg, A.: Stability and response of suspension bridges under turbulent wind excitation. Ph.D. dissertation, Florida Atlantic University, Boca Raton, FL August, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sternberg, A. (1991). Stability Investigation of Long-Span Bridges Using Indical Functions with Oscillatory Terms. In: Elishakoff, I., Lin, Y.K. (eds) Stochastic Structural Dynamics 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84534-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84534-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84536-9

  • Online ISBN: 978-3-642-84534-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics