Linear Viscoelastic Analysis with Random Material Properties

  • Harry H. Hilton
  • John Hsu
  • John S. Kirby


Analytical studies are presented which extend the elastic-viseoelastie analogies to stochastic processes caused by random linear viscoelastic material properties. Separation of variable as well as integral transform correspondence principles are formulated and discussed in detail. The statistical differential equation of the moment characteristic functional is derived, but rather than solving the highly complex functional equation, solutions are formulated in terms of first and second order statistical properties. Both Gaussian and beta distributions are considered for the probability density distributions of creep and relaxation functions and their effectiveness is evaluated.

In order to illustrate the developed general theory, specific examples of beam bending and pressurized hollow cylinders are solved. The influence of various parameters contributing to the creep and relaxation correlation functions is evaluated and the relationship between deterministic and stochastic bounds is also investigated. It is shown that deterministic bounds based on material data spread are unrealistic in the presence of random viscoelastic properties, since the do not correctly predict the limits of this stochastic process.


Viscoelastic Material Radial Stress Hoop Stress Relaxation Function Probability Density Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eringen, A. C. Stochastic loads. Handbook of Engineering Mechanics McGraw Hill Book Co., 1962, Ch. 18.Google Scholar
  2. 2.
    Bieniek, M. P. Creep under random loading. AIAA J. 1965, 3, 1559–1561.CrossRefGoogle Scholar
  3. 3.
    Cozarelli, F. A. and Huang, W. N. Effect of random material parameters on nonlinear steady creep solutions. Int. J. Solids and Structures 2, 1971, 1477–1494.CrossRefGoogle Scholar
  4. 4.
    Huang, W. N. and Cozarelli, F. N. Steady creep bending in a beam with random material parameters. J. Franklin Institute 1972, 294, 323–339.CrossRefMATHGoogle Scholar
  5. 5.
    Huang, W. N. and Cozarelli, F. N. Damped lateral vibration in an axially creeping beam with random material parameters. Int. J. Solids and Structures 1973, 9, 765–788.CrossRefMATHGoogle Scholar
  6. 6.
    Parkus, H. Warmespannungen bei zufellsabhanginger Oberflachentemperatur. ZAMM 1962, 42, 499–507.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Parkus, H. On the lifetime of viscoelastic structures in a random temperature field. Recent Progress in Applied Mechanics 1967, Wiley, N.Y., 391–397.Google Scholar
  8. 8.
    Ziegler, F. Zufallige Temperaturschwankungen und ihr Einfluss auf die Lebensdauer eines Druckstabes aus nichtlinear-viskoelastischem Material. ZAMM 1972, 52, 176–178.Google Scholar
  9. 9.
    Ziegler, F. Snap-through buckling of a viscoelastic von Mises truss in a random temperature field. J. Appl. Mech. 36, 1969, 338–340.CrossRefADSGoogle Scholar
  10. 10.
    Parkus, H. and Zeman, J. L. Note on the behavior of thermorheologically simple materials in random temperature fields. Ada Mechanica 1970, 9, 152–157.CrossRefMATHGoogle Scholar
  11. 11.
    Parkus, H. and Zeman, J. L. Some stochastic problems of thermoviscoelasticity. IUTAM Symposium on Thermoinelasticity Springer, N.Y., 1970, 226–240.Google Scholar
  12. 12.
    Cozarelli, F. A. and Chang, W. P. Wave front stress relaxation in viscoelastic materials with random temperature distributions. Acta Mechanica 1975, 22, 11–30.CrossRefGoogle Scholar
  13. 13.
    Molyneux, J. and Beran, M. J. Statistical properties of the stress and strain fields in a medium with small random variations in elastic coefficients. J. Math. Mech. 1965, 14, 337–351.MathSciNetGoogle Scholar
  14. 14.
    Bazant, Z. P. and Xi, Y. Probabilistic prediction of creep and shrinkage in concrete structures: combined sampling and spectral approach. 5th Int. Conf. on Structural Safety and Reliability (ICOSSAR) A. H. S. Ang, and Shinozuka, M. and Schueller, G. I. eds., 1989, 1, 803–808.Google Scholar
  15. 15.
    Bazant, Z. P. Response of aging linear systems to ergodic random input. J. Eng. Mech. ASCE 1986, 112, 322–350.CrossRefGoogle Scholar
  16. 16.
    Hilton, H. H. Viscoelastic analysis. Engineering Design for Plastics Reinhold Publ. Corp, New York, 1964, 199–276.Google Scholar
  17. 17.
    Hilton, H. H. Thermal stresses in thick walled cylinders exhibiting temperature dependent viscoelastic properties of the Kelvin type. Proc. Second U.S. Nat. Congress on Appl. Mech. 1954, 547-553.Google Scholar
  18. 18.
    Lee, E. H. and Rogers, T. G. Solution of viscoelastic stress analysis problems using measured creep and relaxation functions. J. Appl. Mech. 1963, 30, 127–133.CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Morland, L. W. and Lee, E. H. Stress analysis for linear viscoelastic materials with temperature variation. Trans. Society of Rheology 1960, 4, 233–263.CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Muki, R. and Sternberg, E. On transient thermal stresses in viscoelastic materials with temperature dependent properties. J. Appl. Mech. 1961, 28, 193–207.CrossRefMATHADSMathSciNetGoogle Scholar
  21. 21.
    Hunter, S. C. Tentative equations for the propagation of stress, strain and temperature fields in viscoelastic solids. J. Mechanics and Physics of Solids 1961, 9, 39–51.CrossRefMATHADSMathSciNetGoogle Scholar
  22. 22.
    Alfrey, T. Nonhomogeneous stress in viscoelastic media. Q. Appl. Math. 1944, 2, 113–119.MATHMathSciNetGoogle Scholar
  23. 23.
    Read, W. T. Stress analysis for compressible viscoelastic materials. J. Appl. Physics 1950, 21, 671–674.CrossRefMATHADSMathSciNetGoogle Scholar
  24. 24.
    Hilton, H. H. and Dong, S. B. An analogy for anisotropic, nonhomogeneous linear viscoelasticity including thermal stresses. Proc. Eighth Midwestern Mechanics Conf. 1964, 58-73.Google Scholar
  25. 25.
    Hilton, H. H. and Russell, H. G. An extension of Alfrey’s analogy to thermal stress problems in temperature dependent linear viscoelastic media. J. Mechanics and Physics of Solids 1961, 9, 152–164.CrossRefMATHADSMathSciNetGoogle Scholar
  26. 26.
    Hilton, H. H. and Clements, J. R. Formulation and evaluation of approximate analogies for temperature dependent linear viscoelastic media. Proc. Conference on Thermal Loading and Creep Inst. Mech. Eng. London, 1964, 6:17-6:24.Google Scholar
  27. 27.
    Schapery, R. A. Approximate methods of transform inversion for viscoelastic stress analysis. Proc. Fourth U.S. Nat. Congress of Appl. Mech. 1962, 2, 1075–1085.MathSciNetGoogle Scholar
  28. 28.
    Cost, T. L. Approximate Laplace inversion in viscoelastic stress analysis. AIAA J., 1964, 2, 2157–2166.CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Beran, M. J. Statistical Continuum Theories. Interscience Publ., 1968.Google Scholar
  30. 30.
    Lin, Y. K. Probabilistic Theory of Structural Dynamics, McGraw Hill Book Co., 1967.Google Scholar
  31. 31.
    Hilton, H. H., Majerus, J. N. and Tamekuni, M. Analytical formulation of generalized characterization for linear viscoelastic materials from uni-and multi-axial creep and relaxation data. ICRPG Proceedings 1964, 2, 114–128.Google Scholar
  32. 32.
    Zak, A. R. Structural analysis of realistic solid-propellant materials. J. Spacecraft 1968, 5, 270–275.CrossRefGoogle Scholar
  33. 33.
    Tricomi, F. G. Integral Equations. Interscience Publishers, 1957.Google Scholar
  34. 34.
    Hilton, H. H. On the representation of nonlinear creep by a linear viscoelastic model. J. Aerospace Sciences 1959, 26, 311–312.MATHGoogle Scholar
  35. 35.
    Wen, Y. K. Structural Load Modeling and Combination for Performance and Safety Evaluation. Elsevier, 1990, 19-20.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • Harry H. Hilton
    • 1
  • John Hsu
    • 2
  • John S. Kirby
    • 3
  1. 1.Department of Aeronautical and Astronautical EngineeringUniversity of Illinois, Urbana-ChampaignUrbanaUSA
  2. 2.Asia Cement Corp.Singapore
  3. 3.Advanced Materials and SurvivabilityMcDonnell Douglas Corp.Huntington BeachUSA

Personalised recommendations