Skip to main content

Linear Viscoelastic Analysis with Random Material Properties

  • Conference paper
Stochastic Structural Dynamics 1

Abstract

Analytical studies are presented which extend the elastic-viseoelastie analogies to stochastic processes caused by random linear viscoelastic material properties. Separation of variable as well as integral transform correspondence principles are formulated and discussed in detail. The statistical differential equation of the moment characteristic functional is derived, but rather than solving the highly complex functional equation, solutions are formulated in terms of first and second order statistical properties. Both Gaussian and beta distributions are considered for the probability density distributions of creep and relaxation functions and their effectiveness is evaluated.

In order to illustrate the developed general theory, specific examples of beam bending and pressurized hollow cylinders are solved. The influence of various parameters contributing to the creep and relaxation correlation functions is evaluated and the relationship between deterministic and stochastic bounds is also investigated. It is shown that deterministic bounds based on material data spread are unrealistic in the presence of random viscoelastic properties, since the do not correctly predict the limits of this stochastic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eringen, A. C. Stochastic loads. Handbook of Engineering Mechanics McGraw Hill Book Co., 1962, Ch. 18.

    Google Scholar 

  2. Bieniek, M. P. Creep under random loading. AIAA J. 1965, 3, 1559–1561.

    Article  Google Scholar 

  3. Cozarelli, F. A. and Huang, W. N. Effect of random material parameters on nonlinear steady creep solutions. Int. J. Solids and Structures 2, 1971, 1477–1494.

    Article  Google Scholar 

  4. Huang, W. N. and Cozarelli, F. N. Steady creep bending in a beam with random material parameters. J. Franklin Institute 1972, 294, 323–339.

    Article  MATH  Google Scholar 

  5. Huang, W. N. and Cozarelli, F. N. Damped lateral vibration in an axially creeping beam with random material parameters. Int. J. Solids and Structures 1973, 9, 765–788.

    Article  MATH  Google Scholar 

  6. Parkus, H. Warmespannungen bei zufellsabhanginger Oberflachentemperatur. ZAMM 1962, 42, 499–507.

    Article  MathSciNet  Google Scholar 

  7. Parkus, H. On the lifetime of viscoelastic structures in a random temperature field. Recent Progress in Applied Mechanics 1967, Wiley, N.Y., 391–397.

    Google Scholar 

  8. Ziegler, F. Zufallige Temperaturschwankungen und ihr Einfluss auf die Lebensdauer eines Druckstabes aus nichtlinear-viskoelastischem Material. ZAMM 1972, 52, 176–178.

    Google Scholar 

  9. Ziegler, F. Snap-through buckling of a viscoelastic von Mises truss in a random temperature field. J. Appl. Mech. 36, 1969, 338–340.

    Article  ADS  Google Scholar 

  10. Parkus, H. and Zeman, J. L. Note on the behavior of thermorheologically simple materials in random temperature fields. Ada Mechanica 1970, 9, 152–157.

    Article  MATH  Google Scholar 

  11. Parkus, H. and Zeman, J. L. Some stochastic problems of thermoviscoelasticity. IUTAM Symposium on Thermoinelasticity Springer, N.Y., 1970, 226–240.

    Google Scholar 

  12. Cozarelli, F. A. and Chang, W. P. Wave front stress relaxation in viscoelastic materials with random temperature distributions. Acta Mechanica 1975, 22, 11–30.

    Article  Google Scholar 

  13. Molyneux, J. and Beran, M. J. Statistical properties of the stress and strain fields in a medium with small random variations in elastic coefficients. J. Math. Mech. 1965, 14, 337–351.

    MathSciNet  Google Scholar 

  14. Bazant, Z. P. and Xi, Y. Probabilistic prediction of creep and shrinkage in concrete structures: combined sampling and spectral approach. 5th Int. Conf. on Structural Safety and Reliability (ICOSSAR) A. H. S. Ang, and Shinozuka, M. and Schueller, G. I. eds., 1989, 1, 803–808.

    Google Scholar 

  15. Bazant, Z. P. Response of aging linear systems to ergodic random input. J. Eng. Mech. ASCE 1986, 112, 322–350.

    Article  Google Scholar 

  16. Hilton, H. H. Viscoelastic analysis. Engineering Design for Plastics Reinhold Publ. Corp, New York, 1964, 199–276.

    Google Scholar 

  17. Hilton, H. H. Thermal stresses in thick walled cylinders exhibiting temperature dependent viscoelastic properties of the Kelvin type. Proc. Second U.S. Nat. Congress on Appl. Mech. 1954, 547-553.

    Google Scholar 

  18. Lee, E. H. and Rogers, T. G. Solution of viscoelastic stress analysis problems using measured creep and relaxation functions. J. Appl. Mech. 1963, 30, 127–133.

    Article  ADS  MathSciNet  Google Scholar 

  19. Morland, L. W. and Lee, E. H. Stress analysis for linear viscoelastic materials with temperature variation. Trans. Society of Rheology 1960, 4, 233–263.

    Article  ADS  MathSciNet  Google Scholar 

  20. Muki, R. and Sternberg, E. On transient thermal stresses in viscoelastic materials with temperature dependent properties. J. Appl. Mech. 1961, 28, 193–207.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Hunter, S. C. Tentative equations for the propagation of stress, strain and temperature fields in viscoelastic solids. J. Mechanics and Physics of Solids 1961, 9, 39–51.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Alfrey, T. Nonhomogeneous stress in viscoelastic media. Q. Appl. Math. 1944, 2, 113–119.

    MATH  MathSciNet  Google Scholar 

  23. Read, W. T. Stress analysis for compressible viscoelastic materials. J. Appl. Physics 1950, 21, 671–674.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Hilton, H. H. and Dong, S. B. An analogy for anisotropic, nonhomogeneous linear viscoelasticity including thermal stresses. Proc. Eighth Midwestern Mechanics Conf. 1964, 58-73.

    Google Scholar 

  25. Hilton, H. H. and Russell, H. G. An extension of Alfrey’s analogy to thermal stress problems in temperature dependent linear viscoelastic media. J. Mechanics and Physics of Solids 1961, 9, 152–164.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Hilton, H. H. and Clements, J. R. Formulation and evaluation of approximate analogies for temperature dependent linear viscoelastic media. Proc. Conference on Thermal Loading and Creep Inst. Mech. Eng. London, 1964, 6:17-6:24.

    Google Scholar 

  27. Schapery, R. A. Approximate methods of transform inversion for viscoelastic stress analysis. Proc. Fourth U.S. Nat. Congress of Appl. Mech. 1962, 2, 1075–1085.

    MathSciNet  Google Scholar 

  28. Cost, T. L. Approximate Laplace inversion in viscoelastic stress analysis. AIAA J., 1964, 2, 2157–2166.

    Article  MATH  MathSciNet  Google Scholar 

  29. Beran, M. J. Statistical Continuum Theories. Interscience Publ., 1968.

    Google Scholar 

  30. Lin, Y. K. Probabilistic Theory of Structural Dynamics, McGraw Hill Book Co., 1967.

    Google Scholar 

  31. Hilton, H. H., Majerus, J. N. and Tamekuni, M. Analytical formulation of generalized characterization for linear viscoelastic materials from uni-and multi-axial creep and relaxation data. ICRPG Proceedings 1964, 2, 114–128.

    Google Scholar 

  32. Zak, A. R. Structural analysis of realistic solid-propellant materials. J. Spacecraft 1968, 5, 270–275.

    Article  Google Scholar 

  33. Tricomi, F. G. Integral Equations. Interscience Publishers, 1957.

    Google Scholar 

  34. Hilton, H. H. On the representation of nonlinear creep by a linear viscoelastic model. J. Aerospace Sciences 1959, 26, 311–312.

    MATH  Google Scholar 

  35. Wen, Y. K. Structural Load Modeling and Combination for Performance and Safety Evaluation. Elsevier, 1990, 19-20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Hilton, H.H., Hsu, J., Kirby, J.S. (1991). Linear Viscoelastic Analysis with Random Material Properties. In: Lin, Y.K., Elishakoff, I. (eds) Stochastic Structural Dynamics 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84531-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84531-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84533-8

  • Online ISBN: 978-3-642-84531-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics