Skip to main content

Stochastic Earthquake Modeling with Discretized Line Source

  • Conference paper
Stochastic Structural Dynamics 1
  • 154 Accesses

Summary

An earthquake model is developed, in which the earth is idealized as horizontally stratified layers and the seismic source as propagating dislocation along a line. The line source is further discretized into point sources at equal intervals, and the times at which seismic signals are emitted from the source points are assumed to be Poisson events. The strengths of individual sources are assumed to be independent and identically distributed random variables. A generalized version of the random-pulse-train theory is then used to compute the mean and covariance functions of the ground motion at one site, and the cross-covariance function at two sites. The covariance and cross-covariance functions are converted to the evolutionary spectral density and cross-evolutionary density of the ground motion, which are useful in the computation of the statistics of structural response to earthquake excitations.. Numerical examples are given for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K.; Richards, P.G: Quantitative Seismology — Theory and Methods. W.H. Freeman and Company, New York, 1980.

    Google Scholar 

  2. Alekseev, A.S.; Mikhailenko, B.G.: The solution of dynamic problems of elastic wave propagation in inhomogeneous media by a combination of partial separation of variables and finite-difference methods. J. Geophys. 48 (1980) 167–172.

    Google Scholar 

  3. Apsel, R.J.; Luco, J.E.: On the Green’s function for a layered half-space, part II, Bull. Seism. Soc. Am. 73 (1983) 931–951.

    Google Scholar 

  4. Bouchon, M.: Discrete wave number representation of elastic wave fields in three-space dimensions, J. Geophys. Res. Vol. 84, No. B7 (1979) 3609–3614.

    Article  ADS  Google Scholar 

  5. Bouchon, M.: A simple method to calculate Green’s functions for elastic layered media, Bull. Seism. Soc. Am. 71 (1981) 959–971.

    Google Scholar 

  6. Burridge, R.; Knopoff, L.: Body force equivalents for seismic dislocations, Bull. Seism. Soc. Am. Vol. 54, (1964) 1875–1888.

    Google Scholar 

  7. Chin, R.C.Y.; Hedstrom, G.; Thigpen, L.: Numerical methods in seismology, Journal of Computational Physics, Vol. 54 (1984) pp. 18–56.

    Article  MATH  ADS  Google Scholar 

  8. Cornell, C.A.: Stochastic process models in structural engineering, Stanford Univ. Civil Eng. Dept. Tech. Rept. 34, 1964.

    Google Scholar 

  9. Deodatis G.; Shinozuka M.; Papageorgiou A.: Stochastic wave representation of seismic ground motion. I: F-K spectra, J. Engrg. Mech, Vol. 116, No. 11 (1990) pp. 2363–2379.

    Article  Google Scholar 

  10. Deodatis G.; Shinozuka M.; Papageorgiou A.: Stochastic wave representation of seismic ground motion. II: simulation, J. Engrg. Mech, Vol. 116, No. 11 (1990) pp. 2381–2399.

    Article  Google Scholar 

  11. Haskell, N.A.: Radiation pattern of surface waves from point sources in a multilayered medium, Bull. Seism. Soc. Am. 54 (1964) 54, 377–393.

    Google Scholar 

  12. Hudson, J.A.: A quantitative evaluation of seismic signals at teleseismic distances — I, Radiation from point sources, Geophys. J.R. Astr. Soc. 18 (1969) 233–249.

    MATH  Google Scholar 

  13. Kanamori, H.; Gordon, S.S.: Seismological aspects of the Guatemalatearthquake of February 4, 1976, J. Geophys. Res. Vol 83, No. B7 (1978).

    Google Scholar 

  14. Kanamori, H.: Semi-empirical approach to prediction of long-period ground motions from great earthquakes, Bull. Seism. Soc. Am. Vol. 69 (1979) 1645–1670.

    Google Scholar 

  15. Kennett, B.L.N.: Seismic Wave Propagation in Stratified Media, Cambridge University Press, 1985.

    Google Scholar 

  16. Korn, M.: Computation of wavefields in vertically inhomogeneous media by a frequency domain finite-difference method and application to wave propagation in earth models with random velocity and density perturbations, Geophys.J.R.Astr. Soc. 88 (1987) 345–377.

    Google Scholar 

  17. Lin, Y.K.: Application of nonstationary shot noise in the study of system response to a class of nonstationary excitations, J. Applied Mechanics, Vol. 30, No. 4 (1963) 555–558.

    Article  MATH  ADS  Google Scholar 

  18. Lin, Y.K.: On random pulse train and its evolutionary spectral representation, Probabilistic Engineering Mechanics, Vol. 1, No. 4 (1986) 219–223.

    Article  Google Scholar 

  19. Lin, Y.K.; Yong, Y.: Evolutionary Kanai-Tajimi earthquake models, J. Engrg. Mech. Vol. 113, No. 8 (1987) 1119–1137.

    Article  Google Scholar 

  20. Olson, A.H.; Orcutt, J.A.; Frazier, G.A.: The discrete wavenumber/finite element method for synthetic seismograms, Geophys. J.R. Astr. Soc. 77 (1984) 421–460.

    MATH  Google Scholar 

  21. Pestel, E.C.; Leckie, F.A.: Matrix Methods in Elastomechanics, McGraw-Hill, New York, 1963.

    Google Scholar 

  22. Priestley, M.B.: Evolutionary spectral and nonstationary process, J. Royal Statistical Society, B27 (1965) 204–228.

    MathSciNet  Google Scholar 

  23. Sneddon, I.N.: Fourier Transforms, New York, Toronto, London, 1951.

    Google Scholar 

  24. Stratonovich, R.L.: Topics in the Theory of Random Noise, English translation by R.A. Silverman, Gordon and Breach, Science Publishers, New York, 1963.

    Google Scholar 

  25. Xu, P.-C.; Mal, A.K.: Calculation of the inplane Green’s functions for a layered viscoelastic solid, Bull. Seism. Soc. Am. 77 (1987) 1823–1837.

    Google Scholar 

  26. Yong, Y: Stochastic earthquake modeling and dynamic response analysis, Ph.D. Thesis, Urbana, Illinois, 1987.

    Google Scholar 

  27. Yong, Y.; Lin, Y.K.: Propagation of decaying waves in periodic and piecewise periodic structures of finite length, J. Sound and Vibration 129(2) (1989) 99–118.

    Article  ADS  Google Scholar 

  28. Zhang, R.; Yong, Y.; Lin, Y.K.: Earthquake ground motion modeling with stochastic line source, Part I, to appear in J. Engrg. Mech., (1991).

    Google Scholar 

  29. Zhang, R.; Yong, Y.; Lin, Y.K.: Earthquake ground motion modeling with stochastic line source, Part II, to appear in J. Engrg. Mech., (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Zhang, R., Yong, Y., Lin, Y.K. (1991). Stochastic Earthquake Modeling with Discretized Line Source. In: Lin, Y.K., Elishakoff, I. (eds) Stochastic Structural Dynamics 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84531-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84531-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84533-8

  • Online ISBN: 978-3-642-84531-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics