Skip to main content

Alterations in Calcium Homeostatic Capacity: A Locus for Constructive and Destructive Neuronal Remodeling

  • Conference paper
Glutamate, Cell Death and Memory

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 84 Accesses

Abstract

L-Glutamate is one of the major excitatory neurotransmitters in the central nervous system. We have been investigating neurons from the hippocampus, where glutamate is thought to be the transmitter of the Schaffer collateral-commissural pathway and the hippocampal perforant path (Crawford and Connor 1973; Nadler et al. 1978). Glutamate appears to have several roles in the nervous system. There is a well-documented role for glutamate in normal synaptic transmission. In addition, the overactivity of glutamate systems has been implicated in a variety of neurological diseases (for review, see Choi 1988) such as Alzheimer’s (Geddes et al. 1986; Hyman et al. 1987; Maragos et al. 1987), epilepsy (Schwarcz et al. 1984), Huntington’s disease (Coyle and Schwarcz 1976), and stroke (Rothman 1984; Simon et al. 1984). Along with these fonctions, we have demonstrated another role for glutamate: glutamate and related excitatory amino acids may play specific roles in both the generation and degeneration of hippocampal neurons (Mattson et al. 1988a,b, 1989; Mattson and Kater 1989).

Program of Neuronal Growth and Development, Department of Anatomy, Colorado State University, Fort Collins, Colorado 80512, USA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augustine GJ, Charlton MP, Smith SJ (1987) Calcium action in synaptic transmitter release. Ann Rev Neurosci 10:633–694.

    Article  PubMed  CAS  Google Scholar 

  • Balazs R, Hack N, Jorgensen OS (1988) Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci Lett 87:80–86.

    Article  PubMed  CAS  Google Scholar 

  • Buznikov GA (1990) Neurotransmitters in embryogenesis. Harwood Academic Publisher, Switzerland.

    Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634.

    Article  PubMed  CAS  Google Scholar 

  • Cohan CS, Kater SB (1986) Suppression of neurite elongation and growth cone dynamics by electrical activity. Science 232:1638–1640.

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Schwarcz R (1976) Lesion of striatal neurons with kainic acid provides a model for Huntington’s chorea. Nature 263:244–246.

    Article  PubMed  CAS  Google Scholar 

  • Crawford IL, Connor JD (1973) Localization and release of glutamic acid in relation to the hippocampal mossy fibre pathway. Nature 244:442–443.

    Article  PubMed  CAS  Google Scholar 

  • Forscher P (1989) Calcium and polyphosphoinositide control of cytoskeletal dynamics. TINS 12:468–474.

    PubMed  CAS  Google Scholar 

  • Freiden C (1985) Actin and tubulin polymerization. Ann Rev Biophys Chem 14:189–210.

    Article  Google Scholar 

  • Geddes JW, Chang-Chiu J, Cooper SM, Lott IT, Cotman CW (1986) Density and distribution of NMDA receptors in the human hippocampus in Alzheimer’s disease. Brain Res 399:156–161.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JI, Kater SB (1989) Expression and function of the neurotransmitter serotonin during development of the Helisoma nervous system. Dev Biol 131:483–495.

    Article  PubMed  CAS  Google Scholar 

  • Gromova HA, Chubakov AR, Chumasov EI, Konovalovt (1983) Serotonin as a stimulator of hippocampal cell differentiation in tissue culture. Int J Dev Neurosci 1:339–349.

    Article  Google Scholar 

  • Haydon PG, McCobb DP, Kater SB (1984) Serotonin selectively inhibits growth cone dynamics and synaptogenesis of specific identified neurons of Helisoma. Science 226:561–564.

    Article  PubMed  CAS  Google Scholar 

  • Hume RI, Role LW, Fischbach RD (1983) Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes. Nature 305:632–634.

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR (1987) Alzheimer’s disease: glutamate depletion in the hippocampal perforant pathway zone. Ann Neurol 22(1):37–40.

    Article  PubMed  CAS  Google Scholar 

  • Lankford KL, Letourneau PC (1989) Evidence that calcium may control neurite outgrowth by regulating the stability of actin filaments. J Cell Biol 109:1229–1243.

    Article  PubMed  CAS  Google Scholar 

  • Lankford KL, De Mello FG, Klein WL (1987) A transient embryonic dopamine receptor inhibits growth cone motility and neurite outgrowth in a subset of avian retinal neurons. Neurosci Lett 75:169–174.

    Article  PubMed  CAS  Google Scholar 

  • Letourneau PC (1985) Axonal growth and guidance. In: Edelman GM, Gall WE, Cowan M (eds) Molecular bases of neuronal development. Wiley, New York, pp 269–294.

    Google Scholar 

  • Lipton SA, Kater SB (1989) Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. TINS 12(7):265–270.

    PubMed  CAS  Google Scholar 

  • Lipton SA, Frosch MP, Phillips MD, Tauck DL, Aizenmann E (1988) Nicotinic antagonists enhance process outgrowth of rat retinal ganglion cells in culture. Science 239:1293–1296.

    Article  PubMed  CAS  Google Scholar 

  • Maragos WF, Greenamyre JT, Penney JB, Toung AB (1987) Glutamate dysfunction in Alzheimer’s disease: A hypothesis. TINS 10:65–68.

    CAS  Google Scholar 

  • Mattson MP (1988) Neurotransmitter in the regulation of neuronal cytoarchitecture. Brain Res Rev 13:179–212.

    Article  CAS  Google Scholar 

  • Mattson MP, Kater SB (1987) Calcium regulation of neunte elongation and growth cone motility. J Neurosci 7:4034–4043.

    PubMed  CAS  Google Scholar 

  • Mattson MP, Kater SB (1989) Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroarchitecture. Brain Res 478:337–34.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Dou P, Kater SB (1988a) Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J Neurosci 8(6):2087–2100.

    PubMed  CAS  Google Scholar 

  • Mattson MP, Lee RE, Adams ME, Guthrie PB, Kater SB (1988b) Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1:865–876.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Murrain M, Guthrie PB, Kater SB (1989) Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 9(11):3728–3740.

    PubMed  CAS  Google Scholar 

  • McCobb DP, Cohan CS, Connor JA, Kater SB (1988a) Interactive effects of serotonin and acetylcholine on neurite elongation. Neuron 1:377–385.

    Article  PubMed  CAS  Google Scholar 

  • McCobb DP, Haydon PG, Kater SB (1988b) Dopamine and serotonin inhibition of neurite elongation of identified neurons. J Neurosci Res 19:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Mills LR, Kater SB (1990) Neuron-specific and state-specific differences in calcium homeostasis regulate the generation and degeneration of neuronal architecture. Neuron 2:149–163.

    Article  Google Scholar 

  • Mitchison T, Kirschner M (1988) Cytoskeletal dynamics and nerve growth. Neuron 1:761–772.

    Article  PubMed  CAS  Google Scholar 

  • Mooseker MS, Coleman TR, Conzelman KA (1986) Calcium and the regulation of cytoskeletal assembly, structure and contractility. In: Calcium and the cell Ciba Foundation Symposium 122, Wiley, pp 232-249.

    Google Scholar 

  • Nadler JV, White WF, Vaca KW, Perry BW, Cotman CW (1978) Biochemical correlates of transmission mediated by glutamate and aspartate. J Neurochem 311:147–155.

    Article  Google Scholar 

  • Pearce IA, Cambray-Deakin MA, Burgoyne RD (1987) Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Lett 223:143–147.

    Article  PubMed  CAS  Google Scholar 

  • Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891.

    PubMed  CAS  Google Scholar 

  • Schwarcz R, Foster AC, French ED, Whetsell WO, Kohler C (1984) Excitotoxic models for neurodegenerative disorders. Life Sci 35:19–32.

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Guthrie P, Kater SB (1990) Are spines and dendrites dynamically distinct calcium compartments? Soc Neurosci Abst, 457.

    Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852.

    Article  PubMed  CAS  Google Scholar 

  • Smith JS (1988) Neuronal cytomechanics: the actin-based motility of growth cones. Science 242:708–715.

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP, Chaponnier RM, Ezzell RM, Hartwig JH, Jammey PA, Kwiatkowski DJ, Lind SE, Smith DB, Southwick FS, Yin HL, Zaner KS (1985) Nonmuscle actin binding proteins. Ann Rev Cell Biol 1:353–402.

    Article  PubMed  CAS  Google Scholar 

  • Young SH, Poo MM (1983) Spontaneous release of transmitter from growth cones of embryonic neurons. Nature 305:634–637.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kater, S.B., Carpenter, M.K. (1991). Alterations in Calcium Homeostatic Capacity: A Locus for Constructive and Destructive Neuronal Remodeling. In: Ascher, P., Choi, D.W., Christen, Y. (eds) Glutamate, Cell Death and Memory. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84526-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84526-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84528-4

  • Online ISBN: 978-3-642-84526-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics