Skip to main content

Blockade of Specific K+ Channels Produces a Ca++ Dependent Form of Long-Term Potentiation in the Hippocampus

  • Conference paper
Glutamate, Cell Death and Memory

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 82 Accesses

Abstract

A high-frequency train of electrical stimulation applied to the afferent pathways of the hippocampus produces a long-term potentiation (LTP) of synaptic transmission, which is considered to be a good experimental model of memory processes (Teyler and DiScenna 1987). The mechanisms of the induction and maintenance phases of LTP have been extensively studied in this structure, which plays an important role in memory processes, and the injury of which is known to interfere with learning and memory in humans and animals (Zola-Morgan et al. 1986). There is general agreement that in the CA1 Schaffer collateral associational synapse and the perforant pathway projection to the granule cells of the fascia dentata, the LTP is due to a Ca++ influx produced by the activation of the N-methyl-D-aspartate (NMDA) receptor channel complex (Collingridge and Bliss 1987; Malenka et al. 1989). In contrast, in the mossy fiber synapse, LTP does not involve the NMDA receptor, but is mediated by a rise in [Ca++]i via the activation of voltage-dependent Ca++ channels (Williams and Johnston 1989; Jaffe and Johnston 1990; but see Zalutsky and Nicoll 1990).

INSERM U29, 123 bld de Port-Royal, 75014 Paris, France

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike N, Kostyuk PG, Osipchuk YV (1989) Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones. J Physiol 412:181–195.

    PubMed  CAS  Google Scholar 

  • Aniksztejn L, Ben-Ari Y (1991) A novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus. Nature 349:67–69.

    Article  PubMed  CAS  Google Scholar 

  • Cherubim E, Ben-Ari Y, Gho M, Bidard JN, Lazdunski M (1987) Long-term potentiation of synaptic transmission in the hippocampus induced by a bee venom peptide. Nature 328:70–73.

    Article  Google Scholar 

  • Cherubini E, Ben-Ari Y, Ito S, Krnjevic K (1991) Persistent pulsatile release of glutamate induced by N-methyl-D-aspartate in neonatal rat hippocampal neurones. J Physiol (in press).

    Google Scholar 

  • Collingridge GL, Bliss TVP (1987) NMDA receptors, their role in long-term potentiation. Trends Neurosci 10:288–293.

    Article  CAS  Google Scholar 

  • Grover LM, Teyler TJ (1990) Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347:477–479.

    Article  PubMed  CAS  Google Scholar 

  • Higashi H, Sugita S, Matsunari S, Nishi S (1990) Calcium dependent potentials with different sensitivities to calcium agonists and antagonists in guinea-pig hippocampal neurons. Neuroscience 34:35–47.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe D, Johnston D (1990) Induction of long-term potentiation at hippocampal mossy fiber synapses follows a Hebbian rule. J Neurophysiol 64:948–960.

    PubMed  CAS  Google Scholar 

  • Malenka RC, Kauer J, Perkel DJ, Nicoll RA (1989) The impact of postsynaptic calcium on synaptic transmission-its role in long-term potentiation. Trends Neurosci 12:444–450.

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage dependent block by Mg++ of NMDA responses in spinal cord neurones. Nature 309, 262–263.

    Article  Google Scholar 

  • Nowak L, Bregestowski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate activated channels in mouse central neurones. Nature 307:462–465.

    Article  PubMed  CAS  Google Scholar 

  • Paulsen O, Raastad M, Storm JF (1990) Evidence that tetraethylammonium-sensitive K+ channels contribute to presynaptic spike repolarization and control of transmitter release in hippocampal slices. Soc Neurosci Abst 16:1014.

    Google Scholar 

  • Regehr WG, Tank DW (1990) Postsynaptic NMDA receptor mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites. Nature 345:807–810.

    Article  PubMed  CAS  Google Scholar 

  • Regehr WG, Connor JA, Tank DW (1989) Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation. Nature 341:533–536.

    Article  PubMed  CAS  Google Scholar 

  • Stansfeld CE, Marsh SJ, Parcej DN, Dolly JO, Brown DA (1987) Mast cell degranulating peptide and dendrotoxin selectively inhibit a fast activating potassium current and bind to common neuronal proteins. Neuroscience 23:893–902.

    Article  PubMed  CAS  Google Scholar 

  • Storm JF (1988) Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336:379–381.

    Article  PubMed  CAS  Google Scholar 

  • Storm JF (1990) Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161–187.

    Article  PubMed  CAS  Google Scholar 

  • Teyler TJ, DiScenna P (1987) Long-term potentiation. Ann Rev Neurosci 10:131–161.

    Article  PubMed  CAS  Google Scholar 

  • Westenbroek RE, Ahlijanian MK, Catterall WA (1990) Clustering of L-type Ca++ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347:281–282.

    Article  PubMed  CAS  Google Scholar 

  • Williams S, Johnston D (1989) Long-term potentiation of hippocampal mossy fibers synapses is blocked by postsynaptic injection of calcium chelators. Neuron 3:583–588.

    Article  PubMed  CAS  Google Scholar 

  • Wright JM, Nowak LM (1988) Quartenary ammonium ions block N-methyl-D-aspartate receptor-channels in mammalian central neurons in culture. Soc Neurosci Abstr 14:1046.

    Google Scholar 

  • Zalutsky RA, Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248:1619–1624.

    Article  PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion to field CA1 of the hippocampus. I Neurosci 6:2950–2957.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aniksztejn, L., Ben-Ari, Y. (1991). Blockade of Specific K+ Channels Produces a Ca++ Dependent Form of Long-Term Potentiation in the Hippocampus. In: Ascher, P., Choi, D.W., Christen, Y. (eds) Glutamate, Cell Death and Memory. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84526-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84526-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84528-4

  • Online ISBN: 978-3-642-84526-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics