Skip to main content

Excitatory Amino Acid Induced Cytotoxicity in Cultured Neurons: Role of Intracellular Ca++ Homeostasis

  • Conference paper
Glutamate, Cell Death and Memory

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

In addition to its role as the major excitatory neurotransmitter, L-glutamate may have a toxic effect on neurons (Olney et al. 1971). This neurotoxic action depends on a multiplicity of factors such as concentration, exposure period, glutamate receptor expression, and a variety of intracellular events, the exact nature of which is not known. However, it is likely that different second messenger systems such as the inositol phosphates, cGMP and the intracellular Ca++ concentration are of pivotal importance for initiation and propagation of reactions leading to neuronal damage and death (Siesjö 1988; Siesjö et al. 1989; Choi 1988). It is known that cerebral ischemia leads to loss of particular neurons (Ito et al. 1975) and it has been suggested that neurotransmitter glutamate could play a role in this neuronal degeneration (Jørgensen and Diemer 1982). In keeping with this, a variety of pathological conditions such as ischemia and hypoglycemia have been shown to be associated with an overflow of glutamate into the extracellular space in the brain (Benveniste et al. 1984; Drejer et al. 1985; Sandberg et al. 1986). That glutamate may indeed play an important role in ischemic brain damage is underlined by the finding that such damage to hippocampal CA1 pyramidal cells can be prevented by preischemic destruction of glutamatergic dentate gyrus granule cells (Johansen et al. 1986). Moreover, anoxic neuronal death in hippocampal cultures can be prevented by glutamate antagonists (Rothman 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ascher P, Nowak L (1988) Quisqualate-and kainate-activated channels in mouse central neurones in culture. J Physiol 399:227–245.

    PubMed  CAS  Google Scholar 

  • Ben-Yoseph O, Bachelard HS, Badar-Goffer RS, Dolin SJ, Morris PG (1990) Effects of N-methyl-D-aspartate on [Ca2+]i and the energy state in the brain by l9F-and 31P-nuclear magnetic resonance spectroscopy. J Neurochem 55:1446–1449.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Berdichevsky E, Munoz C, Riveros N, Cartier L, Orrego F (1987) Neuropathological changes in the rat brain cortex in vitro: Effects of kainic acid and of ion substitutions. Brain Res 423:213–220.

    Article  PubMed  CAS  Google Scholar 

  • Bouchelouche P, Belhage B, Frandsen Aa, Drejer J, Schousboe A (1989) Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Ca2+ by mobilization of cellular Ca2+ and activation of Ca2+ influx. Exp Brain Res 76:281–291.

    Article  PubMed  CAS  Google Scholar 

  • Chan PH, Fishman RA (1978) Transient formation of Superoxide radicals in polyunsaturated fatty acid induced brain swelling. J Neurochem 35:1004–1007.

    Article  Google Scholar 

  • Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293–297.

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity in cortical cell culture. J Neurosci 7:369–379.

    PubMed  CAS  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634.

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Maulucci-Gedde MA, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7:357–368.

    PubMed  CAS  Google Scholar 

  • Choi DW, Koh J, Peters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists. J Neurosci 8:185–196.

    PubMed  CAS  Google Scholar 

  • Connor JA (1986) Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian, central nervous system cells. Proc Natl Acad Sci USA 83:6179–6183.

    Article  PubMed  CAS  Google Scholar 

  • Davis J, Francis AA, Jones AW, Watkins JC (1981) 2-Amino-5-phosphonovalerate (2APV), a potent and selective antagonist of amino acid-induced and synaptic excitation. Neurosci Lett 21:77–81.

    Article  Google Scholar 

  • Dichter MA (1978) Rat cortical neurons in cell culture: Culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res 149:279–293.

    Article  PubMed  CAS  Google Scholar 

  • Drejer J, Larsson OM, Schousboe A (1982) Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp Brain Res 47:259–269.

    Article  PubMed  CAS  Google Scholar 

  • Drejer J, Benveniste H, Diemer NH, Schousboe A (1985) Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 45:145–151.

    Article  PubMed  CAS  Google Scholar 

  • Drejer J, Honoré T, Schousboe A (1987) Excitatory amino acid-induced release of 3H-GABA from cultured mouse cerebral cortex interneurons. J Neurosci 7:2910–2916.

    PubMed  CAS  Google Scholar 

  • Dunlop J, Grieve A, Schousboe A, Griffiths R (1989) Neuroactive sulphur amino acids evoke a calcium-dependent transmitter release from cultured neurons that is sensitive to excitatory amino acid receptor antagonists. J Neurochem 52:1648–1651.

    Article  PubMed  CAS  Google Scholar 

  • Dykens JA, Stern A, Trenkner E (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 49:1222–1228.

    Article  PubMed  CAS  Google Scholar 

  • Ehrhart-Bornstein M, Treiman M, Hansen GH, Schousboe A, Thorn NA, Frandsen A (1991) Parallel expression of synaptophysin and evoked neurotransmitter release during development of cultured neurons. Int J Devl Neurosci (in press).

    Google Scholar 

  • Erdö S, Wolff JR (1990) Postnatal development of the excitatory amino acid system in visual cortex of the rat. Changes in ligand binding to NMDA, quisqualate and kainate receptors. Int J Devel Neurosci 8:199–204.

    Google Scholar 

  • Frandsen A, Schousboe A (1987) Time and concentration dependency of the toxicity of excitatory amino acids on cerebral neurons in primary culture. Neurochem Int 10:583–591.

    Article  PubMed  CAS  Google Scholar 

  • Frandsen A, Schousboe A (1990) Development of excitatory amino acid induced cytotoxicity in cultured neurons. Int J Devel Neurosci 8:209–216.

    Article  CAS  Google Scholar 

  • Frandsen A, Schousboe A (1991) Dantrolene prevents glutamate cytotoxicity and Ca++ release from intracellular stores in cultured cerebral cortex neurons. J Neurochem 56:1075–1078.

    Article  PubMed  CAS  Google Scholar 

  • Frandsen A, Drejer J, Schousboe A (1989a) Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors. J Neurochem 53:297–299.

    Article  PubMed  CAS  Google Scholar 

  • Frandsen A, Prejer J, Schousboe A (1989b) Development of excitatory amino acid dependent 45Ca2+ uptake in cultured cerebral cortex neurons. Ann N Y Acad Sci 560:454–455.

    Article  Google Scholar 

  • Frandsen A, Quistorff B, Schousboe A (1990a) Phenobarbital protects cerebral cortex neurons against toxicity induced by kainate but not by other exitatory amino acids. Neurosci Lett 111:233–238.

    Article  PubMed  CAS  Google Scholar 

  • Frandsen A, Krogsgaard-Larsen P, Schousboe A (1990b) Novel glutamate antagonists selectively protect against kainic acid neurotoxicity in cultured cerebral cortex neurons. J Neurochem, 55:1821–1823.

    Article  PubMed  CAS  Google Scholar 

  • Friedman JE, Lelkes PI, Lavie E, Rosenheck K, Schneeweiss F, Schneider AS (1985) Membrane potential and catacholamine secretion by bovine adrenal chromaffin cells: Use of tetraphenylphosphonium distribution and carbocyanine dye fluorescence. J Neurochem 44:1391–1402.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite G, Garthwaite J (1986) Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: Dependence on calcium concentration. Neurosci Lett 66:193–198.

    Article  PubMed  CAS  Google Scholar 

  • Godfraind T, Miller R, Wibo M (1986) Calcium antagonism and calcium entry blockade. Pharmacol Rev 38:324–417.

    Google Scholar 

  • Gram L, Larsson OM, Johnsen AH, Schousboe A (1988) Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 2:87–95.

    Article  PubMed  CAS  Google Scholar 

  • Harrison NL, Simmonds MA (1985) Quantitative studies on some antagonists of N-methyl-D-aspartate in slices of rat cerebral cortex. Br J Pharmacol 84:381–391.

    PubMed  CAS  Google Scholar 

  • Henley JM, Barnard EA (1990) Autoradiographic distribution of binding sites for the non-NMDA receptor antagonist CNQX in chick brain. Neurosci Lett 116:17–22.

    Article  PubMed  CAS  Google Scholar 

  • Henley JM, Ambrosini A, Krogsgaard-Larsen P, Barnard EA (1989) Evidence for a single glutamate receptor of the ionotropic kainate/quisqualate type. New Biologist 1:153–158.

    PubMed  CAS  Google Scholar 

  • Hertz E, Yu ACH, Hertz L, Juurlink BHJ, Schousboe A (1989) Preparation of primary cultures of mouse cortical neurons. In: Shahar A, De Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. Alan R. Liss, Inc., New York, pp 183–186.

    Google Scholar 

  • Honoré T, Drejer J, Nielsen M (1986) Calcium discriminates two [3H]-kainate binding sites with different molecular target sizes in rat cortex. Neurosci Lett 65:47–52.

    Article  PubMed  Google Scholar 

  • Honoré T, Davis SN, Drejer J, Fletcher JE, Jacobsen P, Lodge D, Nielsen FE (1988) Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science 241:701–703.

    Article  PubMed  Google Scholar 

  • Ito U, Spatz M, Walker JT Jr, Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils. I. Light microscopic observations. Acta Neuropathol (Berl) 32:209–223.

    CAS  Google Scholar 

  • Johansen FF, Jørgensen MB, Diemer NH (1986) Ischemic CA-1 pyramidal cell loss is prevented by preischemic colchicine destruction of dentate gyrus granule cells. Brain Res 377:344–347.

    Article  PubMed  CAS  Google Scholar 

  • Johnston GAR, Kennedy SME, Twitchin B (1979) Action of the neurotoxin kainic acid on high affinity uptake of L-glutamic acid in rat brain slices. J Neurochem 32:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen MB, Diemer NH (1982) Selective neuron loss after cerebral ischemia in the rat: Possible role of transmitter glutamate. Acta Neurol Scand 66:536–540.

    Article  PubMed  Google Scholar 

  • Kim JP, Choi DW (1987) Quinolinate neurotoxicity in cortical cell culture. Neuroscience 23:423–432.

    Article  PubMed  CAS  Google Scholar 

  • Kim JP, Koh J, Choi DW (1987) L-Homocysteate is a potent neurotoxin on cultured cortical neurons. Brain Res 437:103–110.

    Article  PubMed  CAS  Google Scholar 

  • Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Meth 20:83–90.

    Article  CAS  Google Scholar 

  • Kojima I, Kojima K, Kreutter D, Rasmussen H (1984) The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways. J Biol Chem 259:14448–14457.

    PubMed  CAS  Google Scholar 

  • Korgsgaard-Larsen P, Ferkany JW, Nielsen EØ, Madsen U, Ebert B, Johansen JS, Diemer NH, Bruhn T, Beattie DT, Curtis DR (1991) Novel class of antagonists at non-N-methyl-D-aspartic acid excitatory amino acid receptors. Synthesis, in vitro and in vivo pharmacology and neuroprotection. J Med Chem 34:123–130.

    Google Scholar 

  • Kudo Y, Ogura A (1986) Glutamate-induced increase in intracellular Ca2+ concentration in isolated hippocampal neurons. Br J Pharmacol 89:191–198.

    PubMed  CAS  Google Scholar 

  • Kuriyama K, Ohkuma S (1987) Development of cerebral cortical GABAergic neurons in vitro. In: Vernadakis A, Privat A, Lauder JM, Timiras PS, Giacobini E (eds) Model systems of development and aging of the nervous system. Martinus Nijhoff, Boston, pp 43–56.

    Chapter  Google Scholar 

  • Köhler C, Schwarcz R (1981) Monosodium glutamate: Increased neurotoxicity after removal of neuronal reuptake sites. Brain Res 211:485–491.

    Article  PubMed  Google Scholar 

  • Larsson OM, Drejer J, Kvamme E, Svenneby G, Hertz L, Schousboe A (1985) Ontogenetic development of glutamate and GABA metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo. Int J Devl Neurosci 3:177–185.

    Article  CAS  Google Scholar 

  • Levi G, Ciotti MT (1983) Glutamate and GABA localization and evoked release in cerebellar cells differentiating in culture. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine, glutamate, and GABA in the central nervous system. Alan R. Liss, New York, pp 493–508.

    Google Scholar 

  • MacDermott AB, Dale N (1987) Receptors, ion channels and synaptic potentials underlying the integrative actions of excitatory amino acids. Trends Neurosci 10:280–284.

    Article  CAS  Google Scholar 

  • Mangano RM, Schwarcz R (1983) Chronic infusion of endogenous excitatory amino acids into rat striatum and hippocampus. Brain Res Bull 10:47–51.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Dou P, Kater SB (1988) Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J Neurosci 8:2087–2100.

    PubMed  CAS  Google Scholar 

  • Mattson MP, Guthrie PB, Hayes BC, Kater SB (1989) Roles for mitotic history in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 9:1223–1232.

    PubMed  CAS  Google Scholar 

  • McGeer EG, McGeer PL, Singh K (1978) Kainate-induced degeneration of neostriatal neurons: dependency upon corticostriatal tract. Brain Res 139:381–383.

    Article  PubMed  CAS  Google Scholar 

  • McPherson GA (1983) A practical computer-based approach to the analysis of ligand binding experiments. Comp Prog Biomed 17:107–114.

    Article  CAS  Google Scholar 

  • Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long term potentiation by an N-methyl-D-aspartate antagonist, AP5. Nature 319:774–776.

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Malouf AT, Sastre A, Schnaar RL, Coyle JT (1988) Calcium-dependent glutamate cytotoxicity in a neuronal cell line. Brain Res 444:325–332.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti F, Wroblewski JT, Novelli A, Alho H, Guidotti A, Costa E (1986) The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J Neurosci 6:1905–1911.

    PubMed  CAS  Google Scholar 

  • Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulfur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14:61–70.

    Article  PubMed  CAS  Google Scholar 

  • Perney TM, Dinerstein RJ, Miller RJ (1984) Depolarization-induced increases in intracellular free calcium detected in single cultured neuronal cells. Neurosci Lett 51:165–170.

    Article  PubMed  CAS  Google Scholar 

  • Rothman SM (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891.

    PubMed  CAS  Google Scholar 

  • Rothman SM, Thurston JH, Hauhart RE (1987) Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience 22:471–480.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg S, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: In vivo dialysis of the rat hippocampus. J Neurochem 47:178–184.

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A, Hertz L (1987) Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. II Developmental aspects. In: Vernadakis A, Privat A, Lauder JM, Timiras P, Giacobini E (eds) Model Systems of Development and Aging of the Nervous System. Martinus Nijhoff Publishing, Boston, pp 33–42.

    Chapter  Google Scholar 

  • Schousboe A, Drejer J, Hansen GH, Meier E (1985) Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids. Devel Neurosci 7:252–262.

    Article  CAS  Google Scholar 

  • Schousboe A, Drejer J, Hertz L (1988) Uptake and release of glutamate and glutamine in neurons and astrocytes in primary cultures. In: Kvamme E (eds) Glutamine and glutamate in mammals, Vol II. CRC Press, Inc, Boca Raton, FL, pp 21–39.

    Google Scholar 

  • Sheardown MJ, Nielsen EØ, Hansen AJ, Jacobsen P, Honore T (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: A neuroprotectant for cerebral ischemia. Science 247:571–574.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö BK (1988) Historical overview: Calcium, ischemia and death of brain cells. Ann NY Acad Sci 522:638–661.

    Article  PubMed  Google Scholar 

  • Siesjö BK (1990) Calcium in the brain under physiological and pathological conditions. Eur Neurol 30(S2):3–9.

    PubMed  Google Scholar 

  • Siesjö BK, Bengtsson F, Grampp W, Theander S (1989) Calcium, excitotoxins, and neuronal death in the brain. Ann NY Acad Sci 568:234–251.

    Article  PubMed  Google Scholar 

  • Siman R, Noszek JC (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1:279–287.

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek F, Pin JP, Recasens M, Bockaert J, Weiss S (1985) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317:717–719.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama H, Ito I, Hirono C (1987) A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325:531–533.

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino F, Guidotti A, Costa E (1987) Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. Proc Natl Acad Sci USA 84:8707–8711.

    Article  PubMed  CAS  Google Scholar 

  • Verdoorn TA, Dingledine R (1989) Excitatory amino acid receptors expressed in Xenopus oocytes: Agonist pharmacology. Molec Pharmacol 34:298–307.

    Google Scholar 

  • Wahl P, Schousboe A, Honore T, Drejer J (1989) Glutamate-induced increase in intracellular Ca2+ in cerebral cortex neurons is transient in immature cells but permanent in mature cells. J Neurochem 53:1316–1319.

    Article  PubMed  CAS  Google Scholar 

  • Wahl P, Honore T, Drejer J, Schousboe A (1991) Development of binding sites for excitatory amino acids in cultured cerebral cortex neuron. Int J Devel Neurosci, in press.

    Google Scholar 

  • Weiss JH, Hartley DM, Koh J, Choi DW (1990) The calcium blocker Nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 247:1474–1477.

    Article  PubMed  CAS  Google Scholar 

  • Yu ACH, Hertz E, Hertz L (1984) Alterations in uptake and release rates for GABA, glutamate and glutamine during biochemical maturation of highly purified cerebral cortical neurons, a GABAergic preparation. J Neurochem 42:951–960.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schousboe, A., Frandsen, A., Wahl, P., Krogsgaard-Larsen, P. (1991). Excitatory Amino Acid Induced Cytotoxicity in Cultured Neurons: Role of Intracellular Ca++ Homeostasis. In: Ascher, P., Choi, D.W., Christen, Y. (eds) Glutamate, Cell Death and Memory. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84526-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84526-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84528-4

  • Online ISBN: 978-3-642-84526-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics