Skip to main content

The NMDA Receptor: Analogies and Differences with the Non-NMDA Glutamate Receptors and with the Nicotinic Acetylcholine Receptor

  • Conference paper
Glutamate, Cell Death and Memory

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 86 Accesses

Abstract

During the last 3 years our conceptions of glutamate receptors have rapidly evolved. The major new observations are probably the characterization of glutamate receptors coupled to G proteins (metabotropic receptors, see Sladeczek et al. 1985; Sugiyama et al. 1987; Nawy and Jahr 1990; Lester et al. 1990a; Charpak et al. 1990) and the cloning of a series of cDNA sequences coding for sub-units of the “non-NMDA” receptors which directly gate ion channels (ionotropic receptors ; Hollmann et al., 1989; Boulter et al., 1990; Keinänen et al., 1990; Sommer et al., 1990; see Heinemann et al., this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Dwyer TM, Hille B (1980) The permeability of endplate channels to monovalent and divalent metal cations. J Gen Physiol 75:493–510.

    Article  PubMed  CAS  Google Scholar 

  • Adams PR (1975) A study of desensitization using voltage clamp. Pflügers Arch 360:135–144.

    Article  PubMed  CAS  Google Scholar 

  • Adams PR (1976) A comparison of the time course of excitation and inhibition by iontophoretic decamethonium in end-plate. Br J Pharmacol 57:59–65.

    PubMed  CAS  Google Scholar 

  • Adams PR (1987) Transmitter action at endplate membrane. In: Salpeter MM (ed) The vertebrate neuromuscular junction. AR Liss, pp 317-359.

    Google Scholar 

  • Ascher P (1988) Divalent cations and the NMDA channel. Biomed Res, suppl 2:31–37.

    Google Scholar 

  • Ascher P, Johnson JW (1990) In: Ritchie JM, Magistretti PJ, Bolis L (eds) Progress in cell Research Vol 1. The structure of the NMDA receptor-channel complex Elsevier, pp 149-158.

    Google Scholar 

  • Ascher P, Nowak L (1988) The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J Physiol (London) 339:247–266.

    Google Scholar 

  • Ault B, Evans RH, Francis AA, Oakes DJ, Watkins JC (1980) Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations. J Physiol 307:413–428.

    PubMed  CAS  Google Scholar 

  • Benveniste M, Clements J, Vyklicky Jr L, Mayer ML (1990) A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J Physiol 428:333–357.

    PubMed  CAS  Google Scholar 

  • Boulter J, Hollmann M, O’Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249:1033–1037.

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG (1987) Glycine binding sites and NMDA receptors in brain. Nature 326:338.

    Article  PubMed  CAS  Google Scholar 

  • Bristow DR, Bowery NG, Woodruff GN (1986) Light microscopic autoradiographic localization of [3H] glycine and [3H] strychnine binding sites in rat brain. Eur J Pharmacol 126:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Cachelin AB, Colquhoun D (1989) Desensitization of the acetylcholine receptor of frog end-plates measured in a vaseline-gap voltage clamp. J Physiol 415:159–188.

    PubMed  CAS  Google Scholar 

  • Changeux J-P (1990) Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel. Fidia Research Foundation, Neuroscience Award Lectures, 4:21–168.

    Google Scholar 

  • Charpak S, Gähwiler BH, Do KQ, Knöpfel T (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 347:765–767.

    Article  PubMed  CAS  Google Scholar 

  • Chizhmakov IV, Kiskin NI, Tsyndrenko A Ya, Kristhtal OA (1990) Desensitization of NMDA receptors does not proceed in the presence of kynurenate. Neurosci Lett 108:88–92.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge, GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210.

    Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10:273–280.

    Article  CAS  Google Scholar 

  • Covarrubias M, Steinbach JH (1990) Excision of membrane patches reduces the mean open time of nicotinic acetylcholine receptors. Pflügers Arch 416:385–392.

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy SG, Usowicz MM (1987) Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325:525–528.

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo E, Rossi P, Garthwaite J (1990) Dual-component NMDA receptor currents at a single central synapse. Nature 346:467–470.

    Article  PubMed  Google Scholar 

  • Dani JA, Eisenmann G (1987) Monovalent and divalent cation permeation by acetylcholine receptor channels. Ion transport related to structure. J Gen Physiol 89:959–983.

    CAS  Google Scholar 

  • Decker ER, Dani JA (1990) Calcium permeability of the nicotinic acetylcholine receptor: the single-channel calcium influx is significant. J Neurosci 10:3413–3420.

    PubMed  CAS  Google Scholar 

  • Dekin MS (1983) Permeability changes induced by L-glutamate at the crayfish neuromuscular junction. J Physiol 341:105–125.

    PubMed  CAS  Google Scholar 

  • Dilger JP, Brett RS (1990) Direct measurement of the concentration-and time-dependent open probability of the nicotinic acetylcholine receptor channel. Biophys J 57:723–731.

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC, McGeer PL (1979) Ionotropic and metabotropic neurotransmission? Trends Neurosci 2:39–40.

    Article  Google Scholar 

  • Fong TM, Davidson N, Lester HA (1989) Further evidence demonstrating that N-methyl-D-asparate and kainate activate distinct ion channels. Synapse 2:88–95.

    Article  Google Scholar 

  • Gibb AJ, Colquhoun D (1991) Glutamate activation of a single NMDA receptor-channel produces a cluster of channel openings. Proc Royal Soc B, 243:39–45.

    Article  CAS  Google Scholar 

  • Grudt TD, Jahr CE (1990) Quisqualate activates N-methyl-D-aspartate receptor channels in hippocampal neurons maintained in culture. Mol Pharmacol 37:477–481.

    PubMed  CAS  Google Scholar 

  • Henderson G, Johnson JW, Ascher P (1990) Competitive antagonists and partial agonists at the glycine modulatory site of the N-methyl-D-aspartate receptor. J Physiol 430:189–212.

    PubMed  CAS  Google Scholar 

  • Hestrin S, Sah P, Nicoll RA (1990) Mechanism generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5:247–253.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342:643–648.

    Article  PubMed  CAS  Google Scholar 

  • Huettner JE, Bean BP (1988) Block of N-methyl-D-aspartate activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci USA 85:1307–1311.

    Article  PubMed  CAS  Google Scholar 

  • Ifune CK, Steinbach JH (1990) Rectification of acetylcholine-elicited currents in PC 12 pheochromocytoma cells. Proc Natl Acad Sci 87:4794–4798.

    Article  PubMed  CAS  Google Scholar 

  • Iino M, Ozawa S, Tsuzuki K (1990) Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones. J Physiol 424:151–165.

    PubMed  CAS  Google Scholar 

  • Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo M, Mory Y, Fukuda K, Numa S (1988) Rings of negatively charged amino acids determine the acetylcholine receptor conductance. Nature 335:645–648.

    Article  PubMed  CAS  Google Scholar 

  • Jahr CE, Stevens CF (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325:522–525.

    Article  PubMed  CAS  Google Scholar 

  • Jahr CE, Stevens CF (1990a) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10:1830–1837.

    PubMed  CAS  Google Scholar 

  • Jahr CE, Stevens CF (1990b) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178–3182.

    PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531.

    Article  PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P (1990) Voltage-dependent block by intracellular Mg2+ of N-methyl-D-aspartate-activated channels. Biophys J 57:1085–1090.

    Article  PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1969) Spontaneous and evoked activity of motor nerve endings in calcium Ringer. J Physiol 203:689–706.

    PubMed  CAS  Google Scholar 

  • Katz B, Thesleff S (1957) A study of the “desensitization” produced by acetylcholine at the motor end-plate. J Physiol 138:63–80.

    PubMed  CAS  Google Scholar 

  • Keinänen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249:556–560.

    Article  PubMed  Google Scholar 

  • Kishimoto H, Simon JR, Aprison MH (1981) Determination of the equilibrium dissociation constants and number of glycine binding sites in several areas of the rat central nervous system using a Na-independent system. J Neurochem 37:1015–1024.

    Article  PubMed  CAS  Google Scholar 

  • Kiskin NI, Krishtal OA, Tsyndrenko A Ya (1986) Excitatory amino acid receptors in hippocampal neurons: kainate fails to desensitize them. Neurosci Lett 63:225–230.

    Article  PubMed  CAS  Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241:835–837.

    Article  PubMed  CAS  Google Scholar 

  • Lester RAJ, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346:565–567.

    Article  PubMed  CAS  Google Scholar 

  • Lester RAJ, Jahr CE (1990) Quisqualate receptor mediated depression of calcium currents in hippocampal neurons. Neuron 4:741–749.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald JF, Miljkovic Z, Pennefather P (1987) Use dependent block of excitatory amino acid currents in cultured neurons by ketamine. J Neurophysiol 58:251–266.

    PubMed  CAS  Google Scholar 

  • MacDonald JF, Wojtowicz JM (1982) The effects of L-glutamate and its analogues upon the membrane conductance of central murine neurones in culture. Can J Physiol Pharmacol 60:282–296.

    Article  PubMed  CAS  Google Scholar 

  • Mathie A, Colquhoun D, Cull-Candy SG (1990) Rectification of currents activated by nicotinic acetylcholine receptors in rat sympathetic neurones. J Physiol 427:625–655.

    PubMed  CAS  Google Scholar 

  • Mayer ML, Vyklicky L Jr, Clements J (1989) Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338:425–427.

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Vyklicky L Jr (1989) Concanavalin A selectively reduces desensitization of mammalian neuronal quisqualate receptors. Proc Natl Acad Sci USA 86:1411–1415.

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1985) The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J Physiol 361:65–90.

    PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartatic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394:501–527.

    PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–264.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan DT, Olverman HJ, Nguyen L, Watkins JC, Cotman CW (1988) Two classes of N-methyl-D-aspartate recognition sites: differential distribution and dfferential regulation by glycine. Proc Natl Acad Sci USA 85:9836–9840.

    Article  PubMed  CAS  Google Scholar 

  • Nawy S, Jahr CE (1990) Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346:269–271.

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus R, Cachelin AB (1990) Changes in the conductance of the neuronal nicotinic acetylcholine receptor channel induced by magnesium. Proc Royal Soc B 241:78–85.

    Article  CAS  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465.

    Article  PubMed  CAS  Google Scholar 

  • Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10:2385–2399.

    PubMed  CAS  Google Scholar 

  • Pin JP, Van Vliet BJ, Bockaert J (1988) NMDA — and kainate — evoked GABA release from striatal neurones differentiated in primary culture: differential blocking by phencyclidine. Neurosci Lett. 87:87–92.

    Article  PubMed  CAS  Google Scholar 

  • Rang HP, Ritter JM (1970) On the mechanism of desensitization at cholinergic receptors. Molec Pharmacol. 6:357–382.

    CAS  Google Scholar 

  • Sather W, MacDonald JF, Ascher P Time-dependent changes in N-methyl-D-aspartate receptor desensitization. In: E.A. Barnard, E. Costa Eds. Transmitter amino acid receptors: structures, transduction and models for drug development, Fidia Research Foundation Symposium Series, Vol. 7, Raven Press, New York, NY, in press.

    Google Scholar 

  • Sather W, Johnson JW, Henderson G, Ascher P (1990a) Glycine-insensitive desensitization of NMDA responses in cultured mouse embryonic neurons. Neuron 4:725–731.

    Article  PubMed  CAS  Google Scholar 

  • Sather W, MacDonald JF, Ascher P (1990b) Activation and desensitization of NMDA receptors in outside-out patches. Soc Neurosci Abstr 16:619.

    Google Scholar 

  • Sekiguchi M, Okamoto K, Sakai Y (1990) Glycine-insensitive NMDA-sensitive receptor expressed in Xenopus oocytes by guinea-pig cerebellar mRNA. J Neurosci 10:2148–2155.

    PubMed  CAS  Google Scholar 

  • Shirasaki T, Nakagawa T, Wakamori M, Tateishi N, Fukuda A, Murase K, Akaike N (1990) Glycine insensitive desensitization of N-methyl-D-aspartate receptors in acutely isolated mammalian central neurons. Neurosci Lett. 108:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Siara J, Ruppersberg JP, Rüdel R (1990) Human nicotinic acetylcholine receptor: the influence of second messengers on activation and desensitization. Pflügers Arch 415:701–706.

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek F, Pin JP, Recasens M, Bockaert J, Weiss S (1985) Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317:717–719.

    Article  PubMed  CAS  Google Scholar 

  • Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg P (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249:1580–1585.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama H, Ito I, Hirono C (1987) A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325:531–533.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama H, Ito I, Watanabe M (1989) Glutamate receptor subtypes may be classified into two major categories: a study on Xenopus oocytes injected with rat brain mRNA. Neuron 3:129–132.

    Article  PubMed  CAS  Google Scholar 

  • Tang CM, Dichter M, Morad M (1989) Quisqualate activates a rapidly inactivating high conductance ionic channel in hippocampal neurons. Science 243:1474–1477.

    Article  PubMed  CAS  Google Scholar 

  • Trautmann A, Siegelbaum SA (1983) The influence of membrane patch isolation on single acetylcholine-channel current in rat myotubes. In: Sakmann B, Neher E (eds) Single channel recording. Plenum Press, New York, pp 473–480.

    Google Scholar 

  • Trussell LO, Fischbach GD (1989) Glutamate receptor desensitization and its role in synaptic transmission. Neuron 3:209–218.

    Article  PubMed  CAS  Google Scholar 

  • Trussell LO, Thio LL, Zorumski CF, Fischbach GD (1988) Rapid desensitization of glutamate receptors in vertebrate central neurons. Proc Natl Acad Sci USA 85:4562–4566.

    Article  PubMed  CAS  Google Scholar 

  • Verdoorn TA, Dingledine R (1988) Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology. Mol Pharmacol 34:298–307.

    PubMed  CAS  Google Scholar 

  • Vignon J, Privat A, Chaudieu I, Thierry A, Kamenka JM, Chicheportiche R (1986) [3H] Thienyl-phencyclidine ([3H]TCP) binds to two different sites in rat brain. Localization by autoradiographic and biochemical techniques. Brain Res 378:133–141.

    CAS  Google Scholar 

  • Vyklicky L Jr, Benveniste M, Mayer ML (1990) Modulation of N-methyl-D-aspartic acid receptor desensitization by glycine in mouse cultured hippocampal neurones. J Physiol 428:313–331.

    PubMed  CAS  Google Scholar 

  • Wong EHF, Knight AR, Woodruff GN (1988) [3H] MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes. J Neurochem 50:274–281.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ascher, P., Sather, W. (1991). The NMDA Receptor: Analogies and Differences with the Non-NMDA Glutamate Receptors and with the Nicotinic Acetylcholine Receptor. In: Ascher, P., Choi, D.W., Christen, Y. (eds) Glutamate, Cell Death and Memory. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84526-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84526-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84528-4

  • Online ISBN: 978-3-642-84526-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics