Skip to main content

Beschreibung des Brennstoffabbrandes

  • Chapter
Book cover Technische Verbrennungssysteme
  • 204 Accesses

Zusammenfassung

Ziel dieses Kapitels soll sein, Ansätze für den Abbrand, d.h. die chemische Reaktion, technischer Brennstoffe aufzuzeigen. Unter technischen Brennstoffen sind Gas, Öl und Kohle zu verstehen. Für andere, wie Müll, industrielle Rückstände und Schlämme, können keine allgemeingültigen Modellierungsansätze angeführt werden, da die Zusammensetzung und damit die an den Reaktionen beteiligten Spezies meist nur unzureichend bekannt sind. Für solche Brennstoffe kann das vorliegende Kapitel nur Anhaltswerte liefern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Bilanzierung von Spezies und Regime der Verbrennung

  1. Brdicka, R.: Grundlagen der physikalischen Chemie. Deutscher Verlag der Wissenschaften, Berlin, 1976

    Google Scholar 

  2. Moore, W.J.: Basic Physical Chemistry. Prentice/Hall Int., London, 1983

    Google Scholar 

  3. Williams, FA.: Combustion Theory, Benjamin/Cummings Publishing Comp., Inc., California, 1988

    Google Scholar 

  4. Strehlow, RA: Combustion Fundamentals. McGraw-Hill Int., New York, 1985

    Google Scholar 

  5. Gardiner, W.C. (Ed.): Combustion Chemistry. Springer Verlag, New York, 1984

    Google Scholar 

  6. Frohn, A: Einführung in die kinetische Gastheorie. Akademische Verlagsgesellschaft, Wiesbaden, 1979

    Google Scholar 

  7. Essenhigh, R.H.: Combustion and Flame Propagation in Coal Systems: A Review. 16th Symp. (Int.) Combustion,1976, pp 353–374

    Google Scholar 

Reaktionskinetik

  1. Spalding, D.B.: Mixing and Chemical Reaction in Steady Confined Turbulent Flames. 13th Symp. (Int.) Comb., 1970, pp 649–657

    Google Scholar 

  2. Magnussen, B.F.; Hjertager, B.H.: On Math. Modelling of Turb. Comb, with Special Emphasis on Soot Formation and Combustion. 16th Symp. (Int.) Comb., 1976, pp 719–729

    Google Scholar 

  3. Hjertager, B.H.: Simulation of Transient Compressible Turbulent Reactive Flows. Combustion Science and Technology, 27 (1982), pp 159–170

    Google Scholar 

  4. Pope, S.B.: PDF Methods for Turbulent Reactive Flows. Prog. Energy Combust. Sci., 11 (1985), pp 119–192

    MathSciNet  Google Scholar 

  5. Bockhorn, H.: Zur Struktur turbulenter Diffusionsflammen. Habilitationsschrift TH Darmstadt, 1989

    Google Scholar 

  6. Peters, N.: Laminar Flamelet Concepts in Turbulent Combustion. 21st Symp. (Int.) Combust., Combust. Inst., 1986, pp 1231–1250

    Google Scholar 

  7. Peters, N.: Das Flammenzonenmodell und seine Anwendungen. Inst, für Allgemeine Mechanik, TH Aachen, Institutsbericht, 1973

    Google Scholar 

  8. Peters, N.: Laminar Diffusion Flamelet Modele in Non-Premixed Turbulent Combustion. Prog. Energy Combust. Sci., 10 (1984), pp 319–339

    Google Scholar 

  9. Rogg, B.; Behrendt, F.; Warnatz, J.: Turbulent Non-Premixed Combustion in Partially Premixed Diffusion Flamelets with Detailed Chemistry. 21st Symp. (Int.) on Combust., München, West Germany, 3.-8.8.1986

    Google Scholar 

  10. Bilger, R.W.: The Structure of Diffusion Flames. Comb. Sci. Techn., 13(1976), pp 155–170

    Google Scholar 

  11. Bilger, R.W.: Turbulent Jet Diffusion Flames. Prog. Energy Combust. Sci., 1 (1976), pp 87–109

    Google Scholar 

  12. de Soete, G.G.: Soot and NOx-Formation in Coal Combustion. In: Coal Utilization - Science and Technology, Tagungsband, Zeist, the Netherlands, 1989

    Google Scholar 

  13. Kuo, K.K.:Principles of Combustion. J. Wiley and Sons, New York, 1986

    Google Scholar 

  14. Correa, S.M.; Sichel, M.: The Group Combustion of a Spherical Cloud of Monodispersed Fuel Droplets. 19th Symp. (Int.) Comb., 1982, pp 981–991

    Google Scholar 

  15. Kerstein, AR.; Law, C.: Percolation in Combusting Sprays I: Transition from Cluster Combustion to Percolate Combustion in Non-Premixed Sprays. 19th Symp. (Int.) Comb., 1982, pp 961–969

    Google Scholar 

  16. Kerstein, A.R.: Percolation in Combusting Sprays II. Width of the Percolate Combusting Zone, Comb. Sci. Techn., 37 (1984), pp 47–57

    Google Scholar 

  17. Chiu, H.H.; Kim, H.Y.; Crake, E.J.: Internal Group Combustion of Liquid Droplets. 19th Symp. (Int.) Comb., 1982, pp 971–980

    Google Scholar 

  18. Annamali, K.; Ramalingam, S.C.: Group Combustion of Char/Carbon Particles. Combustion and Flame, 70 (1987), pp 307–332

    Google Scholar 

  19. Ghoniem, A.F.; Chorin, A.J.; Oppenheim, A.K.: Numerical Modelling of Turbulent Flow in a Combustion Tunnel. Phil. Trans. R. Soc. Lond. A 304, 1982, pp 303–325

    Google Scholar 

  20. Holt, J.S.; Matthews, K.J.; Lawn, C.J.: The Influence of Combustion and Buoyancy upon Furnace Chamber Aerodynamics. IFRF 5th Members’ Conference, Noordwijkerhout, the Netherlands, 8th-10th May 1978

    Google Scholar 

  21. Janicka, J.; Kollmann, W.: Ein Rechenmodell für reagierende turbulente Scherströmungenim chemischenNicht- gleichgewicht. Wärme- und Stoffübertragung, 11 (1978), S. 157–174

    Google Scholar 

  22. Jischa, M.: Zum Impuls-, Wärme- und Stoffaustausch in turbulenten Strömungen reagierender Binärgemische. Teil I: Die Reynold’schen Gleichungen und die Transportgleichungen. Wärme- und Stoffübertragung, 9 (1976), S. 173–178

    Google Scholar 

  23. Jones, W.P.; Whitelaw, J.H.: Modelling and Measurements in Turbulent Combustion. 20th Symp. (Int.) Comb., 1984, pp 233–249

    Google Scholar 

  24. Knoche, K.F.; Janicka, J.; Oebels, R.: Experimentelle und theoretische Untersuchungen an turbulenten MethanDiffusionsflammen. VDI-Berichte Nr. 423,1981

    Google Scholar 

Gasverbrennung

  1. Warnatz, J.: Rate Coefficients in the C/H/O System. In: (Ed.:Gardiner) Combustion Chemistry, Springer Verlag, New York, 1984

    Google Scholar 

  2. Dryer, F.L.; Glassman, L: High-Temperature Oxidation of CO and CH4. 14th Symp. (Int.) on Comb., 1973

    Google Scholar 

  3. Hautman, D. J.; Dryer, F. L.; Schug, K. P.; Glassman, L: A Multiple-Step Overall Kinetic Mechanism for the Oxidation of Hydrocarbons. Comb. Sci. Techn., 25(1981), pp 219–235

    Google Scholar 

  4. Westbrook, C.K; Dryer, F. L.: Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Comb. Sci. Techn., 27(1981), pp 31–43

    Google Scholar 

  5. Warnatz, J.: Elemtarreaktionen in Verbrennungsprozessen. BWK, 37 (1985) Nr. 1–2, S. 11–19

    Google Scholar 

Ōlverbrennung

  1. Law, C.K: Recent Advances in Droplet Vaporization and Combustion. Prog. Energy Combust. Sci., 8 (1982), pp 171–201

    Google Scholar 

  2. Sirigano, WA: An Integrated Approach to Spray Combustion Model Development. ASME 107th Winter Annual Meeting, Anaheim, California, U.SA., 1986

    Google Scholar 

  3. Faeth, G.M.: Evaporation and Combustion of Sprays. Prog. Energy Combust. Sci., 9 (1983), pp 1–76

    Google Scholar 

  4. Elkotb, M.M.: Fuel Atomization for Spray Modelling. Prog. Energy Combust. Sci., 8 (1982), pp 61–91

    Google Scholar 

  5. Faeth, G.M.: Current Status of Droplet and Liquid Combustion. Prog. Energy Combust. Sci., 3 (1977), pp 191–224

    Google Scholar 

  6. Williams, A.: Fundamentals of Oil Combustion. Prog. Energy Combust. Sci., 2 (1976), pp 167–179

    Google Scholar 

  7. Gosman, A.D.; Ioannides, E.: Aspects of Computer Simulation of Liquid-Fuelled Combustors. AIAA 19th Aerospace Sciences Meeting, St. Louis, Missouri, U.S.A, 12.-15. Jan. 1981

    Google Scholar 

  8. Elkotb, M.M.; Elbahar, O.M.F.; Abou- Ellail, M.M.: Spray Modelling in High Turbulent Swirling Flow. 4th Symp. on Turb. Shear. Flows, Karlsruhe, West Germany, 1983

    Google Scholar 

  9. Tochitani, Y.; Mori, Y.H.; Komotori, K: Vaporization of Single Liquid Drops in an Immiscible Liquid. Part I: Forms and Motions of Vaporizing Drops. Wärme- und Stoffübertragung, 10 (1977), S. 51–59

    Google Scholar 

  10. Tochitani, Y.; Mori, Y.H.; Komotori, K: Vaporization of Single Liquid Drops in an Immiscible Liquid, Part II: Heat Transfer Characteristics. Wärme- und Stoffübertragung, 10 (1977), S. 71–79

    Google Scholar 

  11. Godsave, G.A.E.: Burning of Fuel Droplets, Studies of the Combustion of Drops in a Fuel Spray - the Burning of Single Drops of Fuel. 4th Symp. (Int.) on Combust., 1952, pp 818–830

    Google Scholar 

  12. Spalding, D.B.: The Combustion of Liquid Fuels. 4th Symp. (Int.) Combust., 1952, pp 847–864

    Google Scholar 

  13. Cooper, S.: Simple Physical Models of Oil Spray Flames with Particular Reference to Flame Scaling. Joint Meeting of the Oil, Gas, Heat Transfer and Aerodynamics Panels, IJmuiden, the Netherlands, 27.-29. Oct. 1981

    Google Scholar 

  14. Schneider, M. H.: Untersuchungen zum Einfluß der Zerstäubung auf die Verdampfung flüssiger Brennstoffe in turbulenten Sprayflammen. Dissertation TH Darmstadt, 1986

    Google Scholar 

  15. Michel, B.: Einfluß der Zerstäubung auf die Form und die Wärmestrahlung von Heizölflammen. Dissertation Universität Stuttgart, 1970

    Google Scholar 

  16. Hoenig, V.; Baumbach, G.: Schadstoffminderung bei Schwerölflammen durch Additive: Ruß, SO3, NOx. VGB-Kon- greß: Kraftwerkund Umwelt, Tagungsband, 1989, S. 213–217

    Google Scholar 

  17. Hoenig, V.; Baumbach, G.: Messungen zur Schadstoffbildung in additiv-dotierten Schwerölflammen. VDI Berichte, Nr. 645, 1987, S. 369–379

    Google Scholar 

  18. Hoenig, V.; Baumbach, G.: Neutralisation und Rußminderung durch Additive für schweres Heizöl. Brennstoff-Wär- me-Kraft, 41(1989)Nr. 11, S. 483–487

    Google Scholar 

  19. Noll, H.: Private Kommunikation, 1989

    Google Scholar 

Kohleverbrennung

  1. Lowry, H.H. (Ed.): Chemistry of Coal Utilization. Vol. I and II, 1945, supl. Vol. 1963, Wiley and Sons, New York

    Google Scholar 

  2. Elliot, MA. (Ed.): Chemistry of Coal Utilization. 2nd Suppl. Vol., Wiley & Sons, New York, 1981

    Google Scholar 

  3. Hoffmann, E.J.: Coal Conversion. Modern Printing Comp. Laramie, Wyoming, USA, 1978

    Google Scholar 

  4. Field, MA.; Gill, D.W.; Morgan, B.B.; Hawksley, P.G.W.: Combustion of Pulverized Coal, British Coal Utilization Research Association (BCURA), Leatherhead, UK, 1967

    Google Scholar 

  5. Ullmann’s Encyclopedia of Industrial Chemistry. 5. Ed., Vol. B3, Verlag Chemie, Weinheim, 1989

    Google Scholar 

  6. Smoot, L.D.; Pratt, D.T.: Pulverized- Coal Combustion and Gasification, Plenum Press, New York, 1979

    Google Scholar 

  7. Smoot, L.D.; Smith, Pulverized-Coal Combustion and Gasification, Plenum Press, New York, 1985

    Google Scholar 

  8. Richter, W.: Mathematische Modelle technischer Flammen. Dissertation Universität Stuttgart, 1978

    Google Scholar 

  9. Zinser, W.: Zur Entwicklung mathematischer Flammenmodelle für die Verfeuerung technischer Brennstoffe. VDI Fortschrittberichte, Reihe 6, Nr. 171, 1985

    Google Scholar 

  10. Görner, K.: Simulation turbulenter Strömungs- und Wärmeübertragungsvorgänge in Großfeuerungsanlagen. VDI Fortschrittber., Reihe 6, Nr. 201, 1987

    Google Scholar 

  11. Hoitz, J.: Numerisches Modell zur Simulation von Strömungsvorgängen in isothermen physikalischen Feuerangs- modellen.Dissertation, Ruhr-Universität Bochum, 1980

    Google Scholar 

  12. Wirtz, S.: Mathematische Modellierung der Kohlenstaubverbrennung. Dissertation, Ruhr-Universität Bochum, 1989

    Google Scholar 

  13. Annamalai, K.: Critical Regimes of Coal Ignition. Eng. for Power, 101(1979) NO.4, pp 576–583

    Google Scholar 

  14. van Krevelen, D.W.: Coal - Typology, Chemistry, Physics, Constitution. Elsevier Publ. Comp., Amsterdam, 1961

    Google Scholar 

  15. Haenel, M.W.; Collin, G.; Zander, M.: Kohlechemie - Stand, Entwicklungsrichtungen und Perspektiven. Erdöl, Erdgas, Kohle, 105(1989), H.2, S.71–74, H.3, S.131–138

    Google Scholar 

  16. DIN 51718 Bestimmung des Wassergehalts

    Google Scholar 

  17. DIN 51719 Bestimmung des Aschegehaltes

    Google Scholar 

  18. DIN 51720 Bestimmung des Gehalts an Flüchtigen Bestandteilen

    Google Scholar 

  19. DIN 51721 Bestimmung des Gehalts an Kohlenstoff und Wasserstoff

    Google Scholar 

  20. DIN 51722 Bestimmung des Stickstoffgehalts

    Google Scholar 

  21. DIN 51724 Bestimmung des Schwefelgehalts Teil 1: Gesamtschwefel Teil 2: Bindungsarten

    Google Scholar 

  22. DIN 51725 Bestimmung des Phosphorgehalts

    Google Scholar 

  23. DIN 51726 Bestimmung des Gehalts an Carbonat-Kohlenstoffdioxid

    Google Scholar 

  24. DIN 51727 Bestimmung des Chlorgehalts

    Google Scholar 

  25. DIN 51729 Bestimmung der chemischen Zusammensetzung von Brennstoffasche (Teil 1–9)

    Google Scholar 

  26. DIN 51730 Bestimmung des AscheSchmelzverhaltens

    Google Scholar 

  27. Krabbe, H.-J.: Bestimmung von Kohledaten. VGB Kraftwerkstechnik 64 (1984), Nr. 2, S. 158–164

    Google Scholar 

  28. Ruhrkohlenhandbuch, 6. Aufl., Verlag Glückauf, Essen, 1984

    Google Scholar 

  29. Given, P.H.: Concepts of Coal Structure in Relation to Combustion Behavior. Prog. Energy Comb. Sci., 10 (1984), pp 119–158

    Google Scholar 

  30. Wendt, J.O.L.: Fundamental Coal Combustion Mechanisms and Pollution Formation in Furnaces. Prog. Energy Comb. Sci.., 6(1980), pp 201–222

    Google Scholar 

  31. Schnell, U.; Görner, K: Interaction of Kinetics with Heat Transfer and Fluid Flow in Brown Coal Flames. 1989 Int. Conf. Coal Sci., Tokyo, 1989

    Google Scholar 

  32. Collin, G.: Neuere technische Verfahren in der Kohlechemie. Chem.- Ing.-Tech., 59 (1987) Nr. 12, S. 899–906

    Google Scholar 

Pyrolyse

  1. Solomon, P.R.: Relation Between Coal Structure and Thermal Decomposition Products. Coal Structure, Advances in Chemistry-Series, 192, Am.Chem.Soc., 95 (1981), pp 95–112

    Google Scholar 

  2. Pitt, G.J.: The Kinetics of the Evolution of Volatile Products from Coal. Fuel, 41 (1962), pp 267–274

    Google Scholar 

  3. van Krevelen, D.W.; van Heerden, C.; Huntjens, FJ.: Physicochemical Aspects of the Pyrolysis of Coal and Related Organic Compounds. Fuel, 30 (1951), pp 253–259

    Google Scholar 

  4. Fitzgerald, D.; van Krevelen, D.W.: Chemical Structure and Properties of Coal XXI - The Kinetics of Coal Carbonization. Fuel, 38 (1959), pp 17–37

    Google Scholar 

  5. Reidelbach, H.; Summerfield, M.: Kinetic Model for Coal Pyrolysis Optimization. American Chemical Society, Div. of Fuel Chemistry, 20 (1975) 1, pp 161–202

    Google Scholar 

  6. Howard, J.B.: Fundamentals of Coal Pyrolysis and Hydropyrolysis. In: Elliott (Ed.), Chemistry of Coal Utilization, Vol. 2 (Suppl.); Wiley Interscience, New York, 1981

    Google Scholar 

  7. Anthony, D.B.; Howard, J.B.: Coal Devolatilization and Hydrogasification. AIChE Journal, 22 (1976) No. 4, pp 625–656

    Google Scholar 

  8. Suuberg, E.M.; Peters, W.A.:; Howard, J.B.: Product Compositions and Formation Kinetics in Rapid Pyrolysis of Pulverized Coal - Implications for Combustion. 17th Symp. (Int.) Comb., 1978, pp 117–130

    Google Scholar 

  9. van Heek, K.H.: Kinetics of Coal Pyrolysis as Basis for the Design of Industrial Reactors. German Chemical Engineering, 5th ed., 1984, pp 319–327

    Google Scholar 

  10. Nsakala, N.; Essenhigh, R.H.; Walker, Ph.L.: Studies on Coal Reactivity: Kinetics of Lignite Pyrolysis in Nitrogen at 808 degr. Cels.. Combustion Science and Technology, 16 (1977), pp 153–163

    Google Scholar 

  11. Solomon, P.R.; Hamblen, D.G.; Carangelo, R.M.; Krause, J.L.: Coal Thermal Decomposition in an Entrained Flow Reactor: Experiments and Theory. 19th Symp. (Int.) Comb., 1982, pp 1139–1149

    Google Scholar 

  12. Badzioch, S.; Hawksley, P.G.W.: Kinetics of Thermal Decomposition of Pulverized Coal Particles. Ind. Eng. Chem. Process Des. Develop., 9 (1978) No. 4, pp 521–530

    Google Scholar 

  13. Seeker, W.R.; Samuelsen, G.S.; Heap, M.P.; Trolinger, G.D.: The Thermal Decomposition of Pulverized Coal Particles. 18th Symp. (Int.) Comb., 1981, pp 1213–1226

    Google Scholar 

  14. McLean, W.J.; Hardesty, D.R.; Pohl, J.H.: Direct Observations of Devolatilizing Pulverized Coal Particles in a Combustion Environment. 18th Symp. (Int.) on Comb., 1981, pp 1239–1248

    Google Scholar 

  15. Verfuß, F.; Lehmann, J.; Ahland, E.: Bestimmung der Reaktionswärme bei der Schnellentgasung von Steinkohlen. Erdöl und Kohle-Erdgas-Petrochemie vereinigt mit Brennstoff-Chemie, 35 (1982) Heft 7, S. 332–336

    Google Scholar 

  16. Solomon, P.R.; Hamblen, D.G.: Finding Order in Coal Pyrolysis Kinetics. Prog. Energy Combust. Sci., 9 (1983), pp 323–361

    Google Scholar 

  17. Solomon, P.R.; Hamblen, D.G.; Carangelo, R.M.; Serio, MA.; Deshpande, G.V.: A General Model of Coal Devolatilization. ACS paper 58/WP No. 26, 1987

    Google Scholar 

  18. Solomon, P.R.; Colket, M.B.: Coal Devolatilization. 17th Symp. (Int.) Comb., 1978, pp 131–143

    Google Scholar 

  19. Solomon, P.R.; Hamblen, D.G.: Coal Pyrolysis at High Temperature. Am. Chem. Soc. Div. of Fuel Chem. P., 26 (1981), pp 6–17

    Google Scholar 

  20. Anthony, D.B.; Howare, J.B.; Hottel, H.C.; Meissner, H.P.: Rapid Devolatilization of Pulverized Coal. 15th Symp. (Int.) Comb. 1974, pp 1303–1317

    Google Scholar 

  21. Ubhayakar, S.K.; Stickler, D.B.; von Rosenberg, Ch.W. jr.; Gannon, R.E.: Rapid Devolatilization of Pulverized Coal in Hot Combustion Gases. 16th Symp. (Int.) Comb., 1976, pp 427–436.

    Google Scholar 

  22. Kobayashi, H.; Howard, J.B.; Sarofim, A.F.: Coal Devolatilization at High Temperatures. 16th Symp. (Int.) Comb., 1976, pp 411–425

    Google Scholar 

  23. Dekker, J.SA: Modelling of Coal Pyrolysis for Use in Furnace Models. Paper presented at IFRF: Mathematical Modelling of Flames, 14th Meeting, Amsterdam, 1986

    Google Scholar 

  24. Unger, Ph.E.; Suuberg, E.M.: Modeling the Devolatilization Behaviour of a Softening Bituminous Coal. 18th Symp. (Int.) Comb., 1981, pp 1203–1211

    Google Scholar 

  25. Löwenthal, G.; Wanzel, W.; van Heek, K.H.: Kinetics of Swelling and Plasticity of Coal During Rapid Pressurized Pyrolysis and Hydropyrolysis. Fuel, 65 (1986), pp 346–353

    Google Scholar 

  26. Simons, G.A.: The Role of Pore Structure in Coal Pyrolysis and Gasification. Prog. Energy Combust. Sci., 9 (1983), pp 269–290

    Google Scholar 

  27. Blair, D.W.; Wendt, J.O.L.; Bartok, W.: Evolution of Nitrogen and Other Species During Controlled Pyrolysis of Coal. 16th Symp. (Int.) Comb., 1976, pp 475–489

    Google Scholar 

  28. Pohl, J.H.; Sarofim, A.F.: Devolatilization and Oxidation of Coal Nitrogen. 16th Symp. (Int.) Comb., 1976, pp 491–501

    Google Scholar 

  29. Solomon, P.R.; Colket, M.B.: Evolution of Fuel Nitrogen in Coal Devolatizati- on. Fuel, 57 (1978), pp 749–755

    Google Scholar 

  30. Freihaut, J.D.; Zabielski, M.F.; Seery, D J.: A Parametric Investigation of Tar Release in Coal Devolatilization. 19th Symp. (Int.) Comb., 1982, pp 1159–1167

    Google Scholar 

  31. Hertzberg, M.; Zlochower, LA; Edwards, J.C.: Coal Particle Pyrolysis Mechanisms and Temperatures. Report of Investigations 9169, rel. by US Department of the Interior, Int. Bu. of Mines, 1988

    Google Scholar 

  32. Tyler, R J.: Flash Pyrolysis of Coals. 1. Dovolatilization of Victorian Brown Coal in a Small Fluidized-Bed Reactor. Fuel, 58 (1979), pp 680–686

    Google Scholar 

Koksabbrand

  1. Rasch, R.: Modellvorstellungen zu Feststoffreaktionen. Chemiker-Zeitung/Chemische Apparatur, 91 (1976) Heft 17, S. 623–629

    Google Scholar 

  2. Field, MA: Measurements of the Effect of Rank on Comb. Rates of Pulv. Coal. Comb. Flame, 14(1970), pp 237–248

    Google Scholar 

  3. Smith, I.W.: The Combustion Rates of Coal Chars: A Review. 19th Symp. (Int.) Comb., 1982, pp 1045–1065

    Google Scholar 

  4. Thring, M.W.; Essenhigh, R.H.: Thermodynamics and Kinetics of Solid Combustion. H.H. Lowry (Ed.), Chemistry of Coal Utilization, Suppl. Vol., N.Y., London, 1963

    Google Scholar 

  5. Laurendeau, N.M.: Heterogenous Kinetics of Coal Char Gasification and Combustion. Prog. Energy Combust. Sci., 4 (1978), pp 221–270

    Google Scholar 

  6. Arthur, JA.: Reactions between Carbon and Oxygen. Trans. Faraday Soc., 47(1951), pp 164–178

    Google Scholar 

  7. Annamalai, K.; Durbetaki, P.: Combustion Behavior of Char/Carbon Particles. 17th Symp. (Int.) Comb., 1978, pp 169–178

    Google Scholar 

  8. Froberg, R.W.; Essenhigh, R.: Reaction Order and Activation Energy of Carbon Oxidation During Internal Burning. 17th Symp. (Int.) Comb., 1978, pp 179–187

    Google Scholar 

  9. van Heek, K.H.; Mühlen, H.-J.: Heterogene Reaktionen bei der Verbrennung von Kohle. BKW 37 (1985) Nr. 1/2, S.20–28

    Google Scholar 

  10. Solomon, P.R.; Serio, MA.; Heninger, S.G.: Variations in Char Reactivity with Coal Type and Pyrolysis Conditions. ACS/CA, 1986

    Google Scholar 

  11. v. Xieu, D.; Masuda, T.; Cogoli, J.G.; Essenhigh, R.H.: A Mathematical Model of a One-Dimensional Char Flame. A comparison of Theory and Experiment. 18th Symp. (Int.) Comb., 1980, pp 1461–1469

    Google Scholar 

  12. Stahlherm, D.; Jüntgen, H.; Peters, W.: Zündmechanismus und Abbrand von Kohlekörnern. Erdöl und Kohle-Erd- gas-Petrochem. ver. mit Brennstoff- Chem., 27(1974), H.2.

    Google Scholar 

  13. Dutta, S.; Wen, C.Y.; Belt, R.J.: Reactivity of Coal and Char. 1. In Carbon Dioxide Atmosphere. Ind. Eng. Chem., Process Des. Dev., 16 (1977) No. 1, pp 20–30

    Google Scholar 

  14. Dutta, S.; Wen, C.Y.: Reactivity of Coal. and Char. Ind. Eng. Chem., Process Des. Dev., 16 (1977) Nor. 1, pp 31–37

    Google Scholar 

  15. Wells, W.F.; Kramer, S.K.; Smoot, L.D.: Reactivity and Combustion of Coal Chars. 20th Symp. (Int.) Comb., 1984, pp 1539–1546

    Google Scholar 

  16. Field, MA: Measurements of the Effect of Rank on Combustion Rates of Pulverzized Coal. Comb, and Flame, 14 (1970), pp 237–248

    Google Scholar 

  17. Spalding, D.B.: The “Shadow” Method of Particle-Size Calculation in Two- Phase Combustion. 19th Symp. (Int.) Comb., 1982, pp 941–951

    Google Scholar 

  18. Lesly, M.E.; Hedley, A.B.: The Effect of Particle Size Distribution on the Combustion Rate of a Pulverized Anthracite Dust Cloud. J. Inst. Fuel, (1972), pp 224–230

    Google Scholar 

Ascheverhalten

  1. Raask, E.: Mineral Matter Impurities in Coal Combustion. Hemisphere Publ. Corp., Washington, 1985

    Google Scholar 

  2. ten Brink, H.M.: Review on Mineral Matter Transformations and Slagging in Pulverized Coal Combustion. ECN, the Netherlands, Report No. ECN-220, 1989

    Google Scholar 

  3. ten Brink, H.M.; Hamburg, G.; Vleeskens, J.M.; Smart, J.P.; Dugue, J.: Mineral Matter Transformations and Slagging in a Semi-Industrial Furnace. ECN, the Netherlands, Report No. ECN- 222, 1989

    Google Scholar 

  4. ten Brink, H.M.; Hoornstra, J.; Heere, P.G.T.; Plomp, A.; Hamburg, G.: Mineral Matter Transformations in Combustion of Size-Reduced Coal. ECN, the Netherlands, ReportNo. ECN-223, 1989

    Google Scholar 

Fragmentierung

  1. Kerstein, A.R.; Niksa, S.: Fragmentation during Carbon Conversion: Predictions and Measurements. 20th Symp. (Int.) Comb., 1984, pp 941–949

    Google Scholar 

  2. Stauffer, D.: Scaling Theory of Percolation Clusters. Physik Report North- Holland Publ. Comp., Amsterdam, 54 (1979) pp 1–74

    Google Scholar 

  3. Kerstein, A.R.; Law, C.: Percolation in Combusting Sprays I: Transition from Cluster Combustion to Percolate Combustion in Non-Premixed Sprays. 19th Symp. (Int.) Comb., 1982, pp 961–969

    Google Scholar 

  4. Zizman, J.M.: Models of Disorder. Cambridge University Press, Cambridge, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Görner, K. (1991). Beschreibung des Brennstoffabbrandes. In: Technische Verbrennungssysteme. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84488-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84488-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53947-6

  • Online ISBN: 978-3-642-84488-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics