Scanning Tunneling Microscopy of a Metastable c(4×4) Structure Formed on a Si(100) Surface

  • T. Mizutani
  • T. Ide
Conference paper
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 17)


A metastable c(4×4) structure is formed on a silicon (100) surface by hydrogen exposure of 2×10−5 Ton at 700°C for 30 minutes. Atomic images acquired simultaneously at negative and positive biases using an ultrahigh vacuum scanning tunneling microscope (UHV-STM) are inconsistent with the c(4×4) structural models previously proposed. The authors propose a new structural model, where the unit cell has a single topmost dimer.


Silicon Hydride Atomic Image Hydrogen Exposure Cylindrical Mirror Analyzer Adjacent Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. J. Lander and J. Morrison, J. Chem. Phys. 37 (1962) 729.CrossRefGoogle Scholar
  2. [2]
    T. D. Poppendieck, T. C. Ngoc and M. B. Webb, Surf. Sci. 75 (1978) 287.CrossRefGoogle Scholar
  3. [3]
    M. J. Cardillo and G. E. Becker, Phys. Lev. Lett. 40 (1978) 1148.Google Scholar
  4. [4]
    M. J. Cardillo and G. E. Becker, Phys. Rev. B 21 (1980) 1497.Google Scholar
  5. [5]
    T. Tabata, T. Aruga and Y. Murata, Surf. Sci. 179 (1987) L63.CrossRefGoogle Scholar
  6. [6]
    H. W. Wang, R. Lin and X. Wang, Phys. Rev. B 36 (1987) 7712.CrossRefGoogle Scholar
  7. [7]
    K. Kato, T. Ide, T. Nishimori and T. Ichinokawa, Surf. Sci. 207 (1988) 177.CrossRefGoogle Scholar
  8. [8]
    E. G. McRae, R. A. Malic, and D. A. Kapilow, Rev. Sci. Instrum. 56 (1985) 2077.Google Scholar
  9. [9]
    K. Kato, T. Ide, S. Miura and T. Ichinokawa, Surf. Sci. 194 (1988) L87.CrossRefGoogle Scholar
  10. [10]
    L. Barbier and J. Lapujoulade, J. Vac. Sci. Technol. A8 (1990) 2662.Google Scholar
  11. [11]
    R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. B34 (1986) 5343.CrossRefGoogle Scholar
  12. [12]
    H. Niehus, U. K. Köhler, M. Copel and J. E. Demuth, J. Microscopy 152 (1988) 735.CrossRefGoogle Scholar
  13. [13]
    K. C. Pandey, in:Proc. 17th Intern. Conf. on the Phys. of Semiconductors, Eds. D. J. Chadi and W. A. Harrison ( Springer, New York, 1984 ) p. 55.Google Scholar
  14. [14]
    T. Sakurai, T. Hashizume, I. Kamiya, Y. Hasegawa, T. Ide, M.Miyao, I. Sumita, A. Sakai, and S. Hyodo, J. Vac. Sci. Technol. A7 (1989) 1684.Google Scholar
  15. [15]
    J. E. Demuth, R. J. Hamers, R. M. Tromp and M. E. Welland, IBM J. Res. Develop. 30 (1986) 396.CrossRefGoogle Scholar
  16. [16]
    B. S. Swartzentruber, Y. -W. Mo, M. B. Webb and M. G. Lagally, J. Vac. Sci. Technol. A7 (1989) 2901.Google Scholar
  17. [17]
    J. A. Stroscio, R. M. Feenstra and A. P. Fein, Phys. Rev. Lett. 57 (1986) 2579.Google Scholar
  18. [18]
    S. Ohnishi, private communicationGoogle Scholar
  19. [19]
    T. Sakurai and H. D. Hangstrum, Phys. Rev. B 14 (1976) 1593.Google Scholar
  20. [20]
    P. Bedrossian, R. D. Meade, K. Mortensen, D. M. Chen, J. A. Golovchenko, and D. Vanderbilt, Phys. Rev. Lett. 63 (1989) 1257.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1992

Authors and Affiliations

  • T. Mizutani
    • 1
  • T. Ide
    • 1
  1. 1.Fundamental Research LaboratoriesNEC CorporationTsukuba, Ibaraki 305Japan

Personalised recommendations