Dynamic Response of a Viscoelastic Circular Plate on a Viscoelastic Half Space Foundation

  • Yang Ting-Qing
  • Wang Ren
  • Yang Zheng-Wen
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

In the present paper, a dynamic problem of a thin viscoelastic circular plate under axisymmetric loads and resting on a viscoelastic half-space is discussed. This problem is reduced to a Fredholm integral equation of the first kind in Laplace transform space. After solving the integral equation by numerical method, the dynamic response of the problem can be obtained by means of numerical Laplace transform inversion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Pister K S. & Williams M L., J. Engng Mech. Div. ASCE 86 (1960) EM5, 31–44.Google Scholar
  2. 2.
    Sonoda K. & Kobayashi H., J. Engng Mech. Div. ASCE 106 (1980)EM2, 323–338.Google Scholar
  3. 3.
    Kobayashi H. & Sonoda K., Theo. & Appl. Mech., 31 (1981) 153–164.Google Scholar
  4. 4.
    Pister K S., J. Engng Mech. Div. ASCE 87 (1961)EM1, 43–54.Google Scholar
  5. 5.
    Radovskii B S., Soviet Appl. Mech., 15, 10 (1979) 940–946.CrossRefGoogle Scholar
  6. 6.
    Yang Ting-Qing et al, J. Huazhong Univ. of Sci. & Tech., 15 (1987) 1–6 (in Chinese with English abstract).Google Scholar
  7. 7.
    Lin Y J., J. Appl. Mech. 45 (1978) 379–384.MATHCrossRefGoogle Scholar
  8. 8.
    Mase G E., J. Engng Mech. Div. ASCE 86 (1960) EM3,25–39.Google Scholar
  9. 9.
    Yang Zheng-Wen & Yang Ting-Qing, to be published in J. Appl. Math. & Mech.Google Scholar
  10. 10.
    Gurtin M E. & Sternberg E., Arch. Rational Mech. Anal., 11 (1962) 291–356.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Robertson S R., J. Sound Vib. 14, 3 (1971) 263–278.MATHCrossRefGoogle Scholar
  12. 12.
    Yun Tian-Quan, J. Huazhong Univ. of Sci. & Tech., 3 (1978) 94–98 (in Chinese with English abstract).Google Scholar
  13. 13.
    Miller M K. & Guy W T., SIAM J. Numer. Anal., 3, 4 (1966) 624–635.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Yang Ting-Qing, Theory of Viscoelasticity, HUST Press (1990) (in Chinese).Google Scholar
  15. 15.
    Barden L., Struct. Engng, 43 (1965) 153–154.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • Yang Ting-Qing
    • 1
  • Wang Ren
    • 2
  • Yang Zheng-Wen
    • 3
  1. 1.Huazhong University of Science & TechnologyWuhanChina
  2. 2.Peking UniversityPekingChina
  3. 3.Shanghai University of TechnologyShanghaiChina

Personalised recommendations