Modelling of Viscoelastic Behaviour of Plates

  • H. Altenbach
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The behaviour of viscoelastic plates can be described by several engineering theories, based on different assumptions and theoretical conceptions. One of them — the direct approach — is used in this paper to modelize the viscoelastic behaviour of plates. This theory is physically and mathematically correct, but there are other problems, especially the identification of the effective properties in the constitutive equations. The paper deals with a Timoshenko-Reissner-Mindlin type theory, so the main problem is the determination of the classical-plate-properties for stretching, plane shear, bending and torsion and the properties for transverse shear. It is shown by a simple analytical method, that all properties can be found out for viscoelastic plates without any restrictions for the distribution of the material properties in the thickness (symmetric, unsymmetric) and the linear-viscoelastic behaviour (differential or integral relations, complex moduli). The proposed theory is suitable for homogeneous and inhomogeneous (e.g. laminated) plates. For some special cases there are given examples.


Transverse Shear Viscoelastic Behaviour Effective Property Complex Modulus Viscoelastic Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Goldenveizer, A.L., Methods of motivation and increasing accuracy of shell theories, PMM 32, (1968), 4, 684–695 (in Russian); (engl. transl. PMM 32, (1969), 4, 704-718).MathSciNetGoogle Scholar
  2. [2]
    Naghdi, P.M., The Theory of Plates and Shells, Flügge, S., (ed.), Handbuch der Physik VIa/2 (Festkörpermechanik), S. 425–640, Berlin, Heidelberg, New York, Springer 1972.Google Scholar
  3. [3]
    Wunderlich, W., Vergleich verschiedener Approximationen der Theorie dünner Schalen (mit numerischen Beispielen), Tech.-Wiss. Mitt. d. Instituts für Konstructiven Ingenieurbau der Ruhruniversität Bochum, 73-1.Google Scholar
  4. [4]
    Reissner, E., Reflections on the theory of elastic plates, Appl. Mech. Rev. 38, (1985), 11, 1453–1464.CrossRefGoogle Scholar
  5. [5]
    Grigoriuk, E., Kogan, F.A., Contemporary state of theories of multilayered shells, Prik. mekh., VIII (1972), 6, 3–17 (in Russian); (engl. transl. Sov. Appl. Mech. 8, (1974), 6, 583-595).Google Scholar
  6. [6]
    Dudtchenko, A.A., Lurie, S.A., Obrazcov, I.F., Anisotropic multilayered plates and shells, Itogi nauki i tekhniki, Seria ”Mekh. tverd. defor. tiela”, 15, 2-63, Moskva, WINITI 1983 (in Russian).Google Scholar
  7. [7]
    Noor, A.K., Burton, W.S., Assessment of computational models for multilayered composite shells, Appl. Mech. Rev. 43, (1990), 4, 87–97.Google Scholar
  8. [8]
    Zhilin, P.A., Mechanics of Deformahle Directed Surfaces, Int. J. Solids Struct. 12, (1976), 635–648.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Altenbach, H., Eine direkt formulierte lineare Theorie für viskoelastische Platten und Schalen Ing.-Arch. 58, (1988), 215–228.MATHCrossRefGoogle Scholar
  10. [10]
    Altenbach, H., Determination of given properties for multilayered viisco-plastic plates, Mekh. komp. mat., (1988), 1, 58–66 (in Russian).Google Scholar
  11. [11]
    Altenbach, H., Zilin, P.A., The general theory of elastic simple shells, Advances in Mechanics 11, (1988), 4, 107–148 (in Russian).MathSciNetGoogle Scholar
  12. [12]
    Christensen, R.M., Theory of Viscoelasticity, New York, Academic Press 1971.Google Scholar
  13. [13]
    Altenbach, H., Dtermination of elastic moduli for plates made of anisotropic, nonhomogenous, in respect to the thickness, material, Izw. AN SSSR Mekh. tv. tiela (1987), 1, 139–146 (in Russian).Google Scholar
  14. [14]
    Altenbach, H., Die Ermittlung effektiver Eigenschaften für viskoelastische ebene Flächentragwerke, Technische Mechanik 8, (1987), 1, 33–39.Google Scholar
  15. [15]
    Altenbach, H., Eine direkt formulierte Biegetheorie für viskoelastische Ein-und Mehrschichtschalen, Technische Mechanik 7, (1986), 3, 38–43.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • H. Altenbach
    • 1
  1. 1.Technische Universität ”Otto von Guericke”MagdeburgGermany

Personalised recommendations