Advertisement

Finite Element Methods in Stress Analysis for Creep

  • Joao Nisan C. Guerreiro
  • Abimael F. D. Loula
  • James T. Boyle
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

This paper provides an overview of classical and novel solution methods for finite element analysis of creep in structures. The reader is asked to question more thoroughly the accuracy of routine finite element analysis of components subject to creep and to ask whether the resulting solution is indeed meaningful.

Keywords

Finite Element Approximation Galerkin Approximation Steady State Problem Galerkin Solution Creep Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    JT Boyle &amp, J Spence: Stress Analysis for Creep Butterworths, 1983.Google Scholar
  2. 2.
    JNC Guerreiro: New Mixed Finite Element Methods for Creep DSc dissertation, COPPE/UFRJ, 1988.Google Scholar
  3. 3.
    I Finnie: Reflections on the past and future of creep. Proceedings Conf on Creep in Structures, Gothenburg, 1970 Springer, 1972.Google Scholar
  4. 4.
    F Leckie: Advances in creep mechanics. In Creep in Structures, Leicester, 1980 Springer, 1981.Google Scholar
  5. 5.
    A Mendelson et al: A general approach to the practical solution of creep problems. Trans ASME Journ Basic Engineering Vol.82D, 689–694, 1960.Google Scholar
  6. 6.
    AA Il’yushin: Plasticité. Ed Eyrolles, 1956.Google Scholar
  7. 7.
    RH Gallagher et al: Stress analysis of heated complex shapes. ARS Journ Vol.32, 700–707, 1962.MATHGoogle Scholar
  8. 8.
    GA Greenbaum & MF Rubenstein: Creep analysis of axisymmetric bodies using finite elements. Nucl Eng & Design, Vol.7, 379–397, 1968.CrossRefGoogle Scholar
  9. 9.
    CW Gear: Numerical Initial Value Problems in Ordinary Differential Equations Prentice Hall, 1971.Google Scholar
  10. 10.
    I Cormeau: Numerical stability in quasistatic elasto-visco-plasticity. Int Journ Num Methods in Eng., Vol.9, 109–127, 1975.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    TJR Hughes & RL Taylor: Unconditionally stable algorithms for quasi static elasto-visco-plastic finite element analysis. Comp Struct, Vol.8, 169–172, 1978.MATHCrossRefGoogle Scholar
  12. 12.
    JH Argyris et al: Improved solution methods for inelastic rate problems. Comp Meth Appl Mech Eng, Vol.16, 231–277, 1978.MATHCrossRefGoogle Scholar
  13. 13.
    MD Snyder & KJ Bathe: A solution procedure for thermo elastic plastic and creep problems. Nucl Eng & Design, Vol.64, 49–80, 1981.CrossRefGoogle Scholar
  14. 14.
    CW Heaps & L Mansfield: An improved solution procedure for creep problems. Int Journ Num Meth Eng, Vol.23, 525–532, 1986.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R Teman: Navier Stokes Equations. North Holland, 1977.Google Scholar
  16. 16.
    M Kojic & KJ Bathe: The effective stress function algorithm for thermo elasto plasticity and creep. Int Journ Num Meth Eng, Vol.24. 1509–1532, 1987.MATHCrossRefGoogle Scholar
  17. 17.
    TJR Hughes & WK Liu: Implicit explicit elements in transient analysis. Trans ASME Journ Appl Mech, Vol.45, 371–378, 1978.MATHCrossRefGoogle Scholar
  18. 18.
    GG Chen & TR Hsu: A mixed explicit implicit algorithm for creep stress analysis. Int Journ Num Meth Eng, Vol.26,511–524, 1988.MATHCrossRefGoogle Scholar
  19. 19.
    M Ortiz & EP Popov: Accuracy and stability of integration algorithms for elasto plastic constitutive equations. Int Journ Num Meth Eng, Vol.21, 1561–1576, 1985.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    R Mahnken & E Stein: Adaptive time step control in creep analysis. Int Journ Num Meth Eng, Vol.28, 1619–1633, 1989.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    GAO Davies: Results for selected benchmarks. Benchmark, April 1989.Google Scholar
  22. 22.
    MJ Wheeler & SM Yunus: An efficient error approximation technique for use with adaptive meshing. 2nd Int Conf on Quality Assurance and Standards in Finite Element Methods, NAFEMS, Stratford, 1989.Google Scholar
  23. 23.
    JN Reddy: Applied Functional Analysis and Variational Methods in Engineering McGraw-Hill, 1986.Google Scholar
  24. 24.
    F Hartmann: The Mathematical Foundation of Structural Mechanics Springer, 1985.Google Scholar
  25. 25.
    C Johnson: Numerical Solutions of Partial Differential Equations by the Finite Element Method Cambridge University Press, 1987.Google Scholar
  26. 26.
    AFD Loula & JNC Guerreiro: A new mixed finite element formulation for inelastic analysis. IX COBEM, Florianopolis, Brasil, 1987.Google Scholar
  27. 27.
    AFD Loula & JNC Guerreiro: A new finite element method for nonlinear creeping flows. Proc Pan American Congress of Applied Mechanics, Rio de Janeiro, 198. Published in Appl Mech Rev.Google Scholar
  28. 28.
    JNC Guerreiro & AFD Loula: Applications of mixed Galekin and Petrov Galerkin finite element methods in creep analysis. Proc 10th Int Conf on Structural mechanics in Reactor Technology, Los Angeles, 1989.Google Scholar
  29. 29.
    AFD Loula & JNC Guerreiro: Finite element analysis of nonlinear creeping flows. Comp Meth in Appl Mech & Eng, Vol.79, 87–109, 1990.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    B Scheurer: Existence et approximation de point-selle pour certains problemes nonlinearies. RAIRO Vol. 11, 369–400, 1977.MATHMathSciNetGoogle Scholar
  31. 31.
    JT Oden & K Kikuchi: Finite element methods for constrained problems in elasticity. In Journ Num Meth in Eng, Vol.18, 701–725, 1982.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    TJR Hughes: The Finite Element Method Prentice Hall, 1987.Google Scholar
  33. 33.
    AFD Loula, TJ Hughes, LP Franca & I Miranda: Mixed Petrov Galerkin methods for the Timoshenko beam. Comp Meth in Appl Mech & Eng, Vol.63, 133–154, 1987.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    PG Ciarlet: The Finite Element Method for Elliptic Problems North Holland, 1978.Google Scholar
  35. 35.
    R Glowinski & A Marroco: Sur lapproximation par elements finis d’ordre un et la resolution par penalization dualité d’une classe de problem de Dirichlet nonlineaires. RAIRO Vol.2, 41–76, 1975.Google Scholar
  36. 36.
    V Kumar et al: Numerical integration of some stiff constitutive models of inelastic deformation. Trans ASME Journ Eng Mat Tech, Vol.102, 92–96 (1980).CrossRefGoogle Scholar
  37. 37.
    M Ortiz & JC Simo: An analysis of a new class of integration algorithms for elastoplastic constitutive equations. Int Journ Num Meth Eng, Vol.23, 353–366, 1986.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    D Cordts & FG Kollmann: An implicit time integration scheme for inelastic constitutive equations with internal state variables. Int Journ Num Meth Eng, Vol.23, 533–554, 1986.MATHCrossRefGoogle Scholar
  39. 39.
    K Hornberger & H Stamm: An implicit integration algorithm with a projection method for viscoplastic constitutive equations. Int Journ Num Meth in Eng, Vol.28, 2397–2421, 1989.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • Joao Nisan C. Guerreiro
    • 1
  • Abimael F. D. Loula
    • 1
  • James T. Boyle
    • 1
    • 2
  1. 1.Laboratorio Nacional de Computacao CientificaRio de JaneiroBrasil
  2. 2.University of StrathclydeGlasgowScotland

Personalised recommendations