Advertisement

Theoretical, Experimental and Numerical Investigations of Creep Crack Growth

  • R. Kienzler
  • T. Hollstein
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

The paper shows the derivation of integral fracture concept from conservation laws of general continuum mechanics. Its applicability to cracks under steady-state creep conditions is demonstrated experimentally. The numerical procedure necessary for a reliable evaluation of the crack driving parameter from experimental data is discussed.

Keywords

Crack Growth Rate Compact Tension Compact Tension Specimen Creep Crack Growth Electric Power Research Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Riedel: Fracture at High Temperatures. Springer-Verlag Berlin, Heidelberg, New York, London, Paris, Tokyo 1987.Google Scholar
  2. [2]
    J. Lemaitre and J.-L. Chaboche: Mechanics of Solid Materials. Cambridge University Press, Cambridge 1990.MATHGoogle Scholar
  3. [3]
    J.R. Rice: A Path Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks. Journal of Applied Mechanics 35 (1968) 379–386.CrossRefGoogle Scholar
  4. [4]
    H. Riedel and J.R. Rice: Tensile Cracks in Creeping Solids. In: Fracture Mechanics, ASTM STP 700, American Society for Testing and Materials (1980) 112-130.Google Scholar
  5. [5]
    R. Kienzler: On Integral Criteria of Fracture Mechanics and Local Parameters Based on the Energy-Momentum Tensor. In: Proceedings of the Symposium on Elastic-Plastic Fracture Mechanics: Elements of Defect Assessment, October 9–11, 1989, Freiburg, FRG, to be published.Google Scholar
  6. [6]
    J.D. Eshelby: The force on an elastic singularity. Philosophical Transactions of the Royal Society London A 244 (1951) 87–112.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    W. Günther: Über einige Randintegrale der Elastomechanik. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 14 (1962) 53–72.MATHGoogle Scholar
  8. [8]
    J.K. Knowles and E. Sternberg: On a Class of Conservation Laws in Linearized and Finite Elasto-Statics. Archive for Rational Mechanics and Analysis 44 (1972) 187–211.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    A.E. Green: On Some General Formula in Finite Elastostatics. Archive for Rational Mechanics and Analysis 50 (1973) 73–80.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    H. Buggisch, D. Gross und K.-H. Krüger: Einige Erhaltungssätze der Kontinuumsmechanik vom J-Integral-Typ. Ingenieur-Archiv 50 (1981) 103–111.MATHCrossRefGoogle Scholar
  11. [11]
    J.A. Begley and J.D. Landes: The J-Integral as a Fracture Criterion. In: Fracture Toughness, ASTM STP 514, American Society of Testing and Materials (1972) 1-23.Google Scholar
  12. [12]
    J.W. Hutchinson and P.C. Paris: Stability Analysis of J-Controlled Crack Growth. In: Elastic-Plastic Fracture, ASTM STP 668, American Society of Testing and Materials (1979) 37-64.Google Scholar
  13. [13]
    K.M. Nibkin, D.J. Smith and G.A. Webster: Prediction of Creep Crack Growth from Uniaxial Creep Data. Proceedings of the Royal Society London A 396 (1984) 183–197.CrossRefGoogle Scholar
  14. [14]
    T. Hollstein and R. Kienzler: Fracture Mechanics Characterization of Crack Growth under Creep and Fatigue Conditions. Journal of Strain Analysis 23 (1988) 87–96.CrossRefGoogle Scholar
  15. [15]
    V. Kumar, M.D. German and C.F. Shih: An Engineering Approach for Elastic-Plastic Fracture Analysis. Report to Electric Power Research Institute, EPRI NP-1931, Palo Alto 1981.Google Scholar
  16. [16]
    T. Hollstein, F. Djavanroodi, G.A. Webster and S.R. Holdsworth: High Temperature Crack Growth in Alloy 800H and a 1% Cr Mo V Steel-The Results of an EGF Round Robin. In: E. Czoboly (ed.) Failure Analysis, Theory and Practice, ECF 7 II (1988) 656-668.Google Scholar
  17. [17]
    T. Hollstein: Experimental Investigation of Creep Crack Growth for Two High Temperature Alloys. In: H.C. van Elst an A. Bakker (eds.) ECF 6; Fracture Control of Engineering Structures 1 (1986) 451-461.Google Scholar
  18. [18]
    D.M. Parks: A Stiffness Derivative Finite Element Technique for Determination of Elastic Crack Tip Stress Intensity Factors. International Journal of Fracture 10 (1974) 487–502.CrossRefGoogle Scholar
  19. [19]
    H.G. DeLorenzi: Energy Release Rate Calculations by the Finite Element Method. General Electric Technical Information Series, Report No. 82 CRD 205 (1982).Google Scholar
  20. [20]
    R.D. Henshell and K.G. Shaw: Crack Tip Finite Elements are Unnecessary. International Journal for Numerical Methods in Engineering 9 (1975) 496–507.CrossRefGoogle Scholar
  21. [21]
    R.S. Barsoum: Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Elements. International Journal for Numerical Methods in Engineering 11 (1977) 85–98.MATHCrossRefGoogle Scholar
  22. [22]
    H.G. DeLorenzi: J-Integral and Crack Growth Calculations with the Finite Element Program ADINA. Methodology for Plastic Fracture. Report to Electric Power Research Institute, EPRI SRD-78-124 (1978).Google Scholar
  23. [23]
    K-J. Bathe: Finite Element Procedures in Engineering Analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey 1982.Google Scholar
  24. [24]
    K.-J Bathe: ADINA, a Finite Element Program for Automatic Dynamic Incremental Nonlinear Analysis. Report AE 84-1, Massachussetts Institute of Technology, Cambridge, Massachussetts, U.S.A. (1984).Google Scholar
  25. [25]
    IWM-CRACK: Subroutine-Package for Crack Problems. Fraunhofer-Institut für Werkstoffmechanik, WÖhlerstr. 11, D-7800 Freiburg.Google Scholar
  26. [26]
    R. Kienzier and T. Hollstein: Theoretisch-numerische Untersuchungen zu Experimenten mit Kriechrißwachstum. Zeitschrift für Werkstofftechnik 17 (1986) 393–397.CrossRefGoogle Scholar
  27. [27]
    T. Hollstein and R. Kienzier: Investigation of Creep Crack Growth: A Comparison between Experimental and Numerical Results. In: P. Bensussan et al. (eds.) High Temperature Fracture Mechanisms and Mechanics. Proceeding of a Seminar held in Dourdan, France, 1987. Proceeding of Mechamat (1987) III/79-III/91.Google Scholar
  28. [28]
    R. Kienzler and T. Hollstein: Numerical Treatment of Creep Crack Growth. IWM-Bericht W9/90, Fraunhofer-Institut für Werkstoffmechanik, Wö hlerstr. 11, D-7800 Freiburg.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • R. Kienzler
    • 1
  • T. Hollstein
    • 1
  1. 1.Fraunhofer-Institut für WerkstoffmechanikFreiburgGermany

Personalised recommendations