Diffusional Transformation and Creep in Steels

  • E. R. Oberaigner
  • F. D. Fischer
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The influence of creep on a material under diffusional transformation represented by a sphere is investigated. Some new results for an elasto-plastic and creeping hollow sphere are presented. It can be concluded that the transformation kinetics and, therefore, the time dependend deformation behavior is not strongly influenced by creep.


Hollow Sphere Radial Stress Transformation Kinetic Diffusional Transformation Internal Local Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fischer, F.D.: A micromechanical model for transformation plasticity in steels. Acta Metall & Mater. 38 (1990) 1535–1546.CrossRefGoogle Scholar
  2. [2]
    Hahn, H.G.: Elastizitätstheorie. Stuttgart: B.G. Teubner 1985.MATHGoogle Scholar
  3. [3]
    Gautier, E.E.; Simon, A.: Analysis of the kinetics of pearlitic transformation under stress or after plastic deformation. Phase Transformations 87. London: The Institute of Metalls 1988.Google Scholar
  4. [4]
    Yamada, Y.; Yoshimura, N.; Sakurai, T.: Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method. Int. J. Mech. Sci. 10 (1968) 343–354.MATHCrossRefGoogle Scholar
  5. [5]
    Reckling, K.A.: Plastizitätstheorie und ihre Anwendungen auf Festigkeitsprobleme. Berlin, Heidelberg, New York: Springer Verlag 1967.Google Scholar
  6. [6]
    Hult, J.A.: Creep in Engineering Structures. Waltham, MA.: Blaisdell Publishing Company.Google Scholar
  7. [7]
    Butkovskiy, A.G.: Green’s Functions and Transfer Functions Handbook. Chichester: Ellis Horwood Limited 1982.MATHGoogle Scholar
  8. [8]
    Kamke, E.: Differentialgleichungen — Lösungsmathoden und Lösungen I. Stuttgart: B.G. Teubner 1977, 303.Google Scholar
  9. [9]
    Oberaigner, E.R.; Fischer, F.D.: Interner Bericht über Kriechen von Stahl bei diffusiven Phasenünergängen. Leoben, Institut für Mechanik, Montanuniversität Leoben, 1990.Google Scholar
  10. [10]
    Tanaka, K.; Sato, Y.: Ingenieur-Arch. 55 (1985) 147.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • E. R. Oberaigner
    • 1
  • F. D. Fischer
    • 1
  1. 1.Institute of MechanicsUniversity for Mining and MetallurgyLeobenAustria

Personalised recommendations