Skip to main content

Anisotropic Creep Behaviour Induced by Plastic Deformation

  • Conference paper
Creep in Structures

Abstract

A rate-dependent constitutive model which describes deformation induced anisotropy is proposed. The model falls in the category of the unified models. In the first place, we describe an inelastic strain-rate in terms of an isotropic tensor function of the deviatoric stress tensor and a second rank internal variable tensor. Based on its polynomial representation, an effective stress characterized by the internal variable is defined. Then, a simple expression of the internal state is postulated which accounts for a combined state of isotropic and anisotropic hardenings. The evolutional rate of the internal state is prescribed in terms of the effective inelastic strain rate which is defined analogous to the effective stress. Finally, the model behavior is demonstrated in the case of combined creep and plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ohashi Y.; Ohno, N.; Kawai, M.: Evaluation of creep constitutive equations for type 304 stainless steel under repeated multiaxial loading. ASME J. Eng. Mat. Tech. 104 (1982) 159–164.

    Article  Google Scholar 

  2. Sawczuk, A.; Anisimowicz, M.: Tensor functions approach to creep laws after prestrain. In: Ponter, A. R.S.; Hayhurst, D. R. (eds.) Creep in structures. Berlin, Heidelberg, New York: Springer-Verlag (1981) 220–232.

    Chapter  Google Scholar 

  3. Sawczuk, A.; Trampczynski, W. A.: A theory of anisotropic creep after plastic prestraining. Int. J. Mech. Sci. 24 (1982) 647–653.

    Article  MATH  Google Scholar 

  4. Waniewski, M.: A simple law of steady-state creep for material with anisotropy introduced by plastic prestraining. Ing. Arch. 55 (1985) 368–375.

    Article  MATH  Google Scholar 

  5. Trampczynski, W. A.: The influence of cold work on the creep of copper under biaxial states of stress. Act. metall. 30 (1982) 1035–1041.

    Article  Google Scholar 

  6. Krieg, R. D.: Numerical integration of some new unified plasticity-creep formulations. Proc. Int. Conf. SMiRT-4 (1977) M6/4*.

    Google Scholar 

  7. Murakami, S.; Ohno, N.: A constitutive equation of creep based on the concept of a creephardening surface. Int. J. Solids Struc. 18 (1982) 597–609.

    Article  MATH  Google Scholar 

  8. Mroz, Z.; Trampczynski, W. A.: On the creep-hardening rule for metals with a memory of maximal prestress. Int. J. Solids Struc. 20 (1984) 467–486.

    Article  MATH  Google Scholar 

  9. Miller, A.: An inelastic constitutive model for monotonic, cyclic, and creep deformation. ASME J. Eng. Mat. Tech. 98 (1976) 97–113.

    Article  Google Scholar 

  10. Krieg, R. D.; Swearengen, J. C.; Rohde, R. W.: A physically-based internal variable model for rate-dependent plasticity. In: Chang, T. Y.; Krempl, E. (eds.) Inelastic behavior of pressure vessel and piping components. PVP-PB-028 ASME Press (1978) 15-28.

    Google Scholar 

  11. Chaboche, J. L.: Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 25 (1977) 33–42.

    Google Scholar 

  12. Betten, J.: Representation of constitutive equations in creep mechanics of isotropic and anisotropic materials. In: Ponter, A. R. S.; Hayhurst, D. R. (eds.) Creep in structures. Berlin, Heidelberg, New York: Springer-Verlag (1981) 179–201.

    Chapter  Google Scholar 

  13. Ohashi, Y.; Kawai, M.; Momose, T.: Effects of prior plasticity on subsequent creep of type 316 stainless steel at elevated temperature. ASME J. Eng. Mat Tech. 108 (1986) 68–74.

    Article  Google Scholar 

  14. Hart, E. W.: Constitutive relations for the nonelastic deformation of metals. ASME J. Eng. Mat. Tech. 98 (1976) 193–202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Kawai, M. (1991). Anisotropic Creep Behaviour Induced by Plastic Deformation. In: Życzkowski, M. (eds) Creep in Structures. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84455-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84455-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84457-7

  • Online ISBN: 978-3-642-84455-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics