Skip to main content

Prediction of Heat Transfer Rates in a Liquid-Liquid Direct-Contact Heat Exchanger

  • Conference paper
Design and Operation of Heat Exchangers

Part of the book series: EUROTHERM Seminars ((EUROTHERM,volume 18))

  • 832 Accesses

Summary

A heat transfer analysis of a liquid-liquid spray column operating as a direct-contact heat exchanger is presented. The analysis is based upon an iterative procedure originally proposed by Bühler. A major modification of the previously used analytical procedures is based on the assumption of free convection heat transfer inside the drops rather than of forced convection. Predicted heat transfer coefficients and heat transfer rates are compared with experimentally obtained data. A sensitivity analysis is used to demonstrate the degree of dependence of the analytical results on input parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kehat, E., and Sideman, S., “Heat Transfer by Direct Liquid-Liquid Contact,” Recent Advances in Liquid-Liquid Extraction, Pergamon Press, Oxford, 1971, pp. 455–494.

    Google Scholar 

  2. Marschall, E., Johnson, G., and Culbreth, W., “Direct-Contact Heat Transfer,” Progress in Chemical Engineering, Vol. 20, 1982, pp. 41–57.

    Google Scholar 

  3. Letan, R., “Liquid-Liquid Processes,” Direct-Contact Heat Transfer, Hemisphere, Washington, 1988, pp. 83–118.

    Google Scholar 

  4. Clift, R., Grace, J.R., and Weber, M.E., Bubbles, Drops, and Particles, Academic Press, New York, 1978.

    Google Scholar 

  5. Goodfrey, J.E. and Hanson, C., “Liquid-Liquid Systems,” Handbood of Multiphase Systems. Hemisphere, Washington, 1982, pp. 3–4 — 4-41.

    Google Scholar 

  6. Bühler, B.S., “Hydrodynamik and Wärmeaustausch in einem Flüssig-Flüssig Sprühturm,” Doctoral Thesis, Eidgenössische Technische Hochschule Zürich, 1977.

    Google Scholar 

  7. Holland, F.A., “Fluid Flow for Chemical Engineers,” Edward Arnold, London, 1973, p. 160.

    Google Scholar 

  8. Soo, S.L., “Fluid Dynamics of Multiphase Systems,” Blaisdell Publishing Company, London, 1967, p. 87.

    MATH  Google Scholar 

  9. Ferrarini, R., “The Calculation of Flow and Heat Exchange in Liquid-Liquid Spray Columns,” VDI-Forschungsheft 551, Düsseldorf, 1972.

    Google Scholar 

  10. Hupfauf, A., “Lokaler Wärmeübergang und Rückvermischung in Flüssig-Flüssig Sprühkolonnen,” Doctoral Thesis, Eidgenössische Technische Hochshule Zürich, 1973.

    Google Scholar 

  11. Walters, T.W. and Marschall, E., “Drop Formation in Liquid-Liquid Systems,” Experiments in Fluids, Vol. 7, 1989, pp. 210–214.

    Article  ADS  Google Scholar 

  12. Chazal, L. de, and Ryan, J., “Formation of Organic Drops in Water,” AIChE J., Vol. 17, 1971, pp. 1226–1129.

    Article  Google Scholar 

  13. Handlos, A.E., and Baron, “Mass and Heat Transfer from Drops in Liquid-Liquid Extraction,” AIChE J., Vol. 3, 1957, pp. 127–135.

    Article  Google Scholar 

  14. Savic, P., “Circulation and Distortion of Liquid Drops Falling Through a Viscous Medium,” Ref. No. MT-22, Natl. Res. Council Can. Div. Mech. Engng., 1953.

    Google Scholar 

  15. Gal-Or, B., “On Motion of Bubbles and Drops,” Can. J. Chem. Engr., 1970, pp. 526-531.

    Google Scholar 

  16. Scriven, L.E., “Dynamics of a Fluid Interface,” Chemical Engineering Science, Vol. 12, 1960, pp. 98–108.

    Article  Google Scholar 

  17. McWaid, T., and Marschall, E., “Improved Photochromic Flow Visualization Technique,” Experimental Thermal and Fluid Science, Vol. 3, 1990, pp. 232–241.

    Article  Google Scholar 

  18. Hutchins, J.F., “Transient Natural Convection Inside Drops in a Liquid-Liquid Direct-Contact Heat Exchanger,” Doctoral Thesis, University of California, Santa Barbara, 1988.

    Google Scholar 

  19. Moresco, L., “The Effect of Dissolved Solids on Direct-Contact Heat Transfer,” Doctoral Thesis, University of California, Santa Barbara, 1979.

    Google Scholar 

  20. Pickens, M.K., “Experimental Determination of Nusselt Numbers in a Liquid-Liquid Direct-Contact Heat Exchanger,” M.S.-Thesis, University of California, Santa Barbara, 1990.

    Google Scholar 

  21. Hutchins, J.F., “Computer Simulation for the Design of a Direct-Contact Heat Exchanger,” MS-Thesis, University of California, Santa Barbara, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hutchins, J., Moresco, L., Pickens, K., Marschall, E. (1992). Prediction of Heat Transfer Rates in a Liquid-Liquid Direct-Contact Heat Exchanger. In: Roetzel, W., Heggs, P.J., Butterworth, D. (eds) Design and Operation of Heat Exchangers. EUROTHERM Seminars, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84450-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84450-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84452-2

  • Online ISBN: 978-3-642-84450-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics