Wave Models for Unsteady Separation and Jets

  • G. E. A. Meier
  • K. Ehrenfried
  • G. Grabitz
  • M. Rein
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The unsteady behaviour of separation and jets is explained in terms of the propagation and amplification of waves. The formation of waves on the boundaries of separation and jets is often caused by an instability of the Kelvin Helmholtz type. Kinematic waves, however, also lead to an amplification of deformations of the boundaries. Kinematic waves are inherent to dynamic processes as the Kelvin Helmholtz instability, but they can also occur independently. In addition acoustic waves often close feedback loops of self-excited oscillations.


Nozzle Exit Separation Point Flow Oscillation Separation Zone Transonic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.J. Lighthill, F.R.S. and G.B. Whitham, On kinematic waves I. Food movement in long rivers, Proc. Roy. Soc. A 229 (1955), 281–316MathSciNetADSCrossRefMATHGoogle Scholar
  2. [2]
    A. Kluwick, Kinematische Wellen, Acta Mechanica 26 (1977) 15–46CrossRefMATHGoogle Scholar
  3. [3]
    G. Grabitz and G.E.A. Meier, Über Laufzeitinstabilitäten in Flüssigkeitsstrahlen, ZAMM 63 (1983) T255–T257Google Scholar
  4. [4]
    G.E.A., Meier, A. Klöpper and G. Grabitz, The influence of kinematic waves and surface tension on jet breakdown (to be published in Experiments in Fluids)Google Scholar
  5. [5]
    Lord Rayleigh, On the instability of jets, Proc. London Math. Soc. X (4) (1878)Google Scholar
  6. [6]
    G., Grabitz und G.E.A. Meier, Laufzeiteffekte beim geschwindigkeitsgestörten Flüssig-keitsstrahl, ZAMM 71 (in press)Google Scholar
  7. [7]
    G., Grabitz, Berechnung pulsierender Flüssigkeitsfreistrahlen, Max-Planck-Institut für Strömungsforschung, Bericht 15/1990Google Scholar
  8. [8]
    B.Sommerlade, Laufzeit-Effekte in einer Kanalströmung, Max-Planck-Institut für Strömungsforschung, Bericht 10/1990Google Scholar
  9. [9]
    G.E.A. Meier, Shock induced flow oscillations in a Laval nozzle. In: Oswatitsch, K. and Rues, D. (eds.) Symposium Transonicum, 252–261. Springer, Berlin (1976)Google Scholar
  10. [10]
    R. Bohning and J. Zierep, Stoß-Grenzschichtinterferenz bei turbulenter Strömung an gekrümmten Wänden mit Ablösung, Zeitschrift für Flugwissenschaften und Weltraumforschung 6 (1982) 68–74MATHGoogle Scholar
  11. [11]
    M. Rein, G. Grabitz and G.E.A. Meier, Strömungsschwingungeri in Lavaldüsen, Zeitschrift für Flugwissenschaften und Weltraumforschung 10, (1986) 1 - 5Google Scholar
  12. [12]
    M.S. Liou and M. Sajben, Analysis of Unsteady Viscous Transonic Flow with a Shock Wave in a Two-Dimensional Channel, AIAA Paper 80 - 0195 (1980)Google Scholar
  13. [13]
    C.P. Chen, M. Sajben and J.C. Kroutil, Shock-Wave Oscillations in a Transonic Diffuser Flow, AIAA J. 17 (10) (1979) 1076 - 1083ADSCrossRefGoogle Scholar
  14. [14]
    K. Ehrenfried, Dynamik der Lavaldüsenströmung bei unterschiedlichen Randbedingungen, Max-Planck-Institut für Strömungsforschung, Bericht 5/1988Google Scholar
  15. [15]
    F.E.C. Culick and T. Rogers, The Response of Normal Shocks in Diffusers, AIAA J. 21 (10) (1983) 1382 - 1390ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • G. E. A. Meier
    • 1
  • K. Ehrenfried
    • 1
  • G. Grabitz
    • 1
  • M. Rein
    • 1
  1. 1.Max-Planck-Institut für StrömungsforschungGöttingenGermany

Personalised recommendations