Break-up in Steady and Unsteady Separation

  • Frank T. Smith
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

This article describes three recent developments in the theory and associated computations of separating and transitional boundary layers. The three developments, which are very much inter-related, concern the following: a reversed-flow breakdown in the solution of the steady interacting boundary-layer equations; a finite-time break-up possible in any unsteady interactive boundary layer; and the absence of large-scale separation in turbulent flow. The aerodynamic implications for stall, intermittency, transition and turbulence effects are also emphasized.

Keywords

Vortex Vorticity Compressibility Poss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.Messiter, A.F.: Boundary-layer interaction theory, Trans. A.S.M.E. Jnl. Appl. Mech., Vol 50 (1983), 1104–1113.ADSCrossRefMATHGoogle Scholar
  2. Smith, F.T.: Steady and unsteady boundary layer separation, Annual Revs, of Fluid Mechs., Vol 18 (1986), 197 - 220.ADSCrossRefGoogle Scholar
  3. Stewartson, K.: D’Alembert’s paradox, S.I.A.M. Review, Vol 23 (1981), 308–343.MathSciNetCrossRefMATHGoogle Scholar
  4. Smith, F.T.: A reversed-flow singularity in interacting boundary layers, Proc. Roy. Soc., Vol A420 (1988), 21 - 52.CrossRefMATHGoogle Scholar
  5. Smith, F.T.: Finite-time break-up can occur in any unsteady interactive boundary layer, Mathematika, Vol 35 (1988), 256 - 273.MathSciNetCrossRefMATHGoogle Scholar
  6. Neish, A.: Ph.D. thesis, Univ. of London (1989); and Neish, A. and Smith, F.T.: Theory on turbulent separation, J. Fluid Mech. (1990), submitted.Google Scholar
  7. Sychev, V. V. & Sychev, Vik V.: On turbulent separation, Zh. Vyssh. Mat. Mekh. Fiz., Vol 20 (1980), 1500–1512.Google Scholar
  8. 8.
    Smith, F.T.; Doorly D.J. and Rothmayer A.P.: On displacement-thickness, wall-layer and mid-flow scales in turbulent boundary layers, and slugs of vorticity in channel and pipe flows, Proc. Roy. Soc. A (1990), in press.Google Scholar
  9. Rizzetta, D.P.; Burggraf, O.R. and Jenson, R.: Triple-deck solutions for viscous supersonic and hypersonic flow past corners, J. Fluid Mech., Vol 89 (1978), 535–552.ADSCrossRefGoogle Scholar
  10. Smith, F.T.: Separating flow: small-scale, large-scale, and nonlinear steady effects, in Boundary-Layer Separation (eds. Smith, F.T. and Brown, S.N. ), Springer-Verlag, Heidelberg (1987).Google Scholar
  11. 11.
    Walker, J.D.A.; Peridier, V.J. and Smith, F.T.: Methods for the calculation of unsteady separation, A.I.A.A. 26th Aerospace Sci. Mtg., January (1988) Reno, Nevada, paper 88–0604.Google Scholar
  12. 12.Smith, F.T.: Steady and unsteady 3D interactive boundary layers, R T Davis Mem. Symp. (1987) and Computers & Fluids, to appear (1990).Google Scholar
  13. Fasel, H.: in Turbulence and Chaotic Phenomena in Fluids, (ed. Tatsumi, T.) Elsevier Sci. Pub. B.V. (1984).Google Scholar
  14. Elliott, J.W. and Smith, F.T.: Dynamic stall due to unsteady marginal separation, J. Fluid Mech., Vol 179 (1987), 489-512; and Smith, F.T.: Concerning dynamic stall, Aeron.Quarterly, November (1982), 331–352.Google Scholar
  15. Neish, A. and Smith, F. T.: The turbulent boundary layer and wake of an aligned flat plate, J. Eng. Maths., Vol 22 (1988), 15–42.CrossRefMATHGoogle Scholar
  16. Cebeci T. and Smith, A.M.0.: Analysis of Turbulent Boundary Layers, Academic Press, New York (1974).MATHGoogle Scholar
  17. Townsend, A.A.: The Structure of Turbulent Shear Flows, second ed. (1976).Google Scholar
  18. Smith, F.T.: Nonlinear effects and non-parallel flows: the collapse of separating motion, Utd. Tech. Rept. UTRC 85–55; and Brown, S. N.; Cheng, H.K. and Smith, F.T.: J. Fluid Mech., Vol. 193 (1988) 191–216.MathSciNetADSCrossRefMATHGoogle Scholar
  19. Smith, F.T.: Interactions in boundary-layer transition, Invited Lecture, ICTAM Congress, Grenoble, 1988, published in “Theoretical and Applied Mechanics”, (eds Germain, P., Piau, M., Caillerie, D. ), Elsever Sci. Pub. B.V. (1989).Google Scholar
  20. Smith, F.T. and Khorrami, A.F.: The interactive breakdown in supersonic ramp flow, J.Fluid Mech. (1990), submitted.Google Scholar
  21. Peridier, V.J.; Smith, F.T., and Walker, J.D.A.: Computations for an unsteady interacting boundary layer, and comparisons with theory, paper (1990) to be submitted for publication; see also 23.Walker, J.D.A.: Proc. Workshop on Unsteady Separation, Ohio State University, January 1990.Google Scholar
  22. 22.
    Hoyle, J.W.; Smith, F.T. and Walker, J.D.A.: On sublayer eruption and vortex formation, Computer Phys. Commns. (1990), to appear.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1991

Authors and Affiliations

  • Frank T. Smith
    • 1
  1. 1.Department of MathematicsUniversity College LondonLondonUK

Personalised recommendations