Introduction

  • Vladimir A. Gubanov
  • Alexandr I. Liechtenstein
  • Andrei V. Postnikov
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 98)

Abstract

The magnetic properties of solids have a purely quantum nature. Any classical system in thermal equilibrium cannot possess a magnetic moment, even in an external magnetic field. The appearance of magnetic moments at the crystal atoms is related to the spin moments of the electrons, which can interact due to quantum exchange effects, and leads to the appearance of spontaneous magnetic ordering. The values of such exchange interactions between spin moments are defined by the character of the electron wavefunction, i.e. by chemical bonding effects.

Keywords

Ferrite Fluoride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.1
    S.V. Vonsovskii: Magnetism, Vols. 1, 2 (Wiley, New York 1974)Google Scholar
  2. 1.2
    C.M. Hurd: Contemp. Phys. 23, 469–493 (1982)CrossRefADSGoogle Scholar
  3. 1.3
    Y.A. Izyumov, R.P. Ozerov: Magnetic Neutron Diffraction (Plenum, New York 1970)Google Scholar
  4. 1.4
    R.M. Wite, T.H. Geballe: Long range order in solids, in Solid State Physics, Suppl. 15, ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Academic, New York 1979)Google Scholar
  5. 1.5
    T. Moriya: Phys. Rev. 120, 91–98 (1960)CrossRefADSGoogle Scholar
  6. 1.6
    W. Heisenberg: Z. Phys. 49, 619–631 (1928)CrossRefADSGoogle Scholar
  7. 1.7
    J. Goodenough: Magnetism and crystal structure in nonmetals, in Magnetism, Vol. 3, ed. by G.T. Rado, H. Suhl (Academic, New York 1966) p. 1Google Scholar
  8. 1.8
    P.A.M. Dirac: Proc. R. Soc. London A 123, 714–728 (1929)CrossRefMATHADSGoogle Scholar
  9. 1.9
    J.H. van Vleck: The Theory of Electronic and Magnetic Susceptibilities (Oxford University Press, Oxford 1932)Google Scholar
  10. 1.10
    S.V. Tyablikov: Methods in the Quantum Theory of Magnetism (Plenum, New York 1967)Google Scholar
  11. 1.11
    J. Smart: Evaluation of exchange interactions from experimental data, in Magnetism, Vol. 2, ed. by G.T. Rado, H. Suhl (Academic, New York 1963) p. 63Google Scholar
  12. 1.12
    A.J. Freeman, R.E. Watson: Phys. Rev. 124, 1439–1454 (1961)CrossRefMATHADSMathSciNetGoogle Scholar
  13. 1.13
    J.I. Frenkel: Z. Phys. 49, 31–42 (1928)CrossRefADSGoogle Scholar
  14. 1.14
    F. Bloch: Z. Phys. 57, 545–558 (1929)CrossRefADSGoogle Scholar
  15. 1.15
    E.C. Stoner: Proc. R. Soc. London A 165, 372–381 (1938)CrossRefADSGoogle Scholar
  16. 1.16
    C. Herring: Exchange interactions among itinerant electrons, in Magnetism, Vol. 4, ed. by G.T. Rado, H. Suhl (Academic, New York 1964) pp. 1–407Google Scholar
  17. 1.17
    E. Wigner: Phys. Rev. 46, 1002–1019 (1934)CrossRefMATHADSGoogle Scholar
  18. 1.18
    D.M. Ceperley, B.J. Adler: Phys. Rev. Lett. 45, 566–569 (1980)CrossRefADSGoogle Scholar
  19. 1.19
    D.R. Salahub, R.P. Messmer: Surf. Sci. 106, 415–421 (1981)CrossRefADSGoogle Scholar
  20. 1.20
    T. Moriya: Spin Fluctuations in Itinerant Electron Magnetism, Springer Ser. Solid-State Sci., Vol. 56 (Springer, Berlin, Heidelberg 1985)Google Scholar
  21. 1.21
    P.W. Anderson: Exchange in insulators: Superexchange, direct exchange and double exchange, in Magnetism, Vol. 1, ed. by G.T. Rado, H. Suhl (Academic, New York 1964) pp. 25–84Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Vladimir A. Gubanov
    • 1
  • Alexandr I. Liechtenstein
    • 1
  • Andrei V. Postnikov
    • 2
  1. 1.Institute of Solid State ChemistryRussian Academy of SciencesJekaterinburgRussia
  2. 2.Institute of Metal PhysicsRussian Academy of SciencesJekaterinburgRussia

Personalised recommendations