Coulomb-Regulated Conductance Oscillations in a Disordered Quantum Wire

  • A. A. M. Staring
  • H. van Houten
  • C. W. J. Beenakker
  • C. T. Foxon
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 101)


Disordered quantum wires have been defined by means of a splitgate lateral depletion technique in the two-dimensional electron gas in GaAs-AlGaAs heterostructures, the disorder being due to the incorporation of a layer of beryllium acceptors in the 2DEG. In contrast to the usual aperiodic conductance fluctuations due to quantum interference, periodic conductance oscillations are observed experimentally as a function of gate voltage (or density). No oscillations are seen in the magnetoconductance, although a strong magnetic field dramatically enhances the amplitude of the oscillations periodic in the gate voltage. The fundamentally different roles of gate voltage and magnetic field are elucidated by a theoretical study of a quantum dot separated by tunneling barriers from the leads. A formula for the periodicity of the conductance oscillations is derived which describes the regulation by the Coulomb interaction of resonant tunneling through zero-dimensional states, and which explains the suppression of the magnetoconductance oscillations observed experimentally.


Gate Voltage Strong Magnetic Field Quantum Wire Charge Density Wave Resonant Tunneling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B.L. Al’tshuler, Pis’ma Zh. Eksp. Teor. Fiz. 41, 530 (1985) [JETP Lett. 41, 648 (1985).Google Scholar
  2. P.A. Lee and A.D. Stone, Phys. Rev. Lett. 55, 1622 (1985).CrossRefGoogle Scholar
  3. [2]
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988).CrossRefGoogle Scholar
  4. B.J. van Wees, L.P. Kouwenhoven, H. van Houten, C.W.J. Beenakker, J.E. Mooij, C.T. Foxon, and J.J. Harris, PRB38, 3625 (1988).Google Scholar
  5. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, J. Phys. C 21, L209 (1988).CrossRefGoogle Scholar
  6. [3]
    K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).CrossRefGoogle Scholar
  7. [4]
    J.H.F. Scott-Thomas, S.B. Field, M.A. Kastner, H.I. Smith, and D.A. Antoniadis, Phys. Rev. Lett. 62, 583 (1989).CrossRefGoogle Scholar
  8. [5]
    U. Meirav, M.A. Kastner, M. Heiblum, and S.J. Wind, Phys. Rev. B 40, 5871 (1989).CrossRefGoogle Scholar
  9. [6]
    H. van Houten and C.W.J. Beenakker, Phys. Rev. Lett. 63, 1893 (1989).CrossRefGoogle Scholar
  10. [7]
    K.K. Likharev, IBM J. Res. Dev. 32, 144 (1988), and references therein.CrossRefGoogle Scholar
  11. [8]
    N.S. Wingreen and P.A. Lee, presented at the NATO Adv. Study Inst. on Quantum Coherence in Mesoscopic systems (Les Arcs, 1990).Google Scholar
  12. [9]
    L.I. Glazman and R.I. Shekhter, J. Phys. Condens. Matter 1, 5811 (1989).CrossRefGoogle Scholar
  13. [10]
    D.V. Averin and A.N. Korotkov, Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP] (to be published); A.N. Korotkov, D.V. Averin, and K.K. Likharev, in Proc. 19th Int. Conf. on Low Temperature Physics (Physica B, to be published).Google Scholar
  14. [11]
    M. Anman, K. Mullen, and E. Ben-Jacob, J. Appl. Phys. 65, 339 (1989).CrossRefGoogle Scholar
  15. [12]
    S.B. Field, M.A. Kastner, U. Meirav, J.H.F. Scott-Thomas, D.A. Antoniadis, H.I. Smith, and S.J. Wind, preprint.Google Scholar
  16. [13]
    U. Meirav, M.A. Kastner, and S.J. Wind, preprint.Google Scholar
  17. [14]
    B.J. van Wees, L.P. Kouwenhoven, C.J.P.M. Harmans, J.G. Williamson, C.E. Timmering, M.E.I. Broekaart, C.T. Foxon, and J.J. Harris, Phys. Rev. Lett. 62, 2523 (1989).CrossRefGoogle Scholar
  18. [15]
    R.J. Brown, C.G. Smith, M. Pepper, M.J. Kelly, R. Newbury, H. Ahmed, D.G. Hasko, J.E.F. Frost, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, J. Phys. Condens. Matter 1, 6291 (1989).CrossRefGoogle Scholar
  19. [16]
    D.A. Wharam, M. Pepper, R. Newbury, H. Ahmed, D.G. Hasko, D.C. Peacock, J.E.F. Frost, D.A. Ritchie, and G.A.C. Jones, J. Phys. Condens. Matter 1, 3369 (1989).CrossRefGoogle Scholar
  20. [17]
    T.J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G.J. Davies, Phys. Rev. Lett. 56, 1198 (1986).CrossRefGoogle Scholar
  21. H.Z. Zheng, H.P. Wei, D.C. Tsui, and G. Weimann, Phys. Rev. B 34, 5635 (1986).CrossRefGoogle Scholar
  22. [18]
    S.E. Laux, D.J. Frank, and F. Stern, Surf. Sci. 196, 101 (1988).CrossRefGoogle Scholar
  23. [19]
    C.W.J. Beenakker and H. van Houten, Quantum Transport in Semiconductor Nanostructures, in Solid State Physics, H. Ehrenreich and D. Turnbull, eds., (Academic Press, New York), to be published.Google Scholar
  24. [20]
    C.W.J. Beenakker, H. van Houten, and A.A.M. Staring, submitted to Phys. Rev. Lett.Google Scholar
  25. [21]
    A. Kumar, S.E. Laux, and F. Stern, preprint.Google Scholar
  26. [22]
    For an elongated dot it is more appropriate to assume that only one transverse mode is present, in which case ΔE = (h/4L)(E F/2m)½ assuming hard-wall boundary conditions. This leads to the same estimate for ΔE, however.Google Scholar
  27. [23]
    U. Sivan and Y. Imry, Phys. Rev. Lett. 61, 1001 (1988).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • A. A. M. Staring
    • 1
  • H. van Houten
    • 1
  • C. W. J. Beenakker
    • 1
  • C. T. Foxon
    • 2
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations