Advertisement

Experimental Aspects of Optically Detected EPR and ENDOR

  • Johann-Martin Spaeth
  • Jürgen R. Niklas
  • Ralph H. Bartram
Chapter
  • 171 Downloads
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 43)

Abstract

In this chapter some of the essential features of spectrometers for optical detection of EPR and ENDOR are described. Unless necessary, we will not distinguish between ODEPR and ODENDOR, but simply refer to ODMR. Basically, there are two kinds of ODMR spectrometers. In one, the ODMR effect is measured as a microwave- or rf-induced change of the fluorescence or phosphorescence light intensity. It is often achieved by adding optical components to an ordinary EPR spectrometer and providing it with a special cavity (emission-type spectrometer). Since such spectrometers were described elsewhere previously [9.1–3], they will be dealt with only briefly here. The other type of ODMR spectrometer is based on a spectrometer to measure the magnetic circular dichroism of the absorption (MCDA) or the magnetic circular polarization of emitted light (MCPE), be it fluorescence or phosphorescence, to which the microwave and rf components are added (MCDA-type spectrometer). This type of spectrometer was described earlier [9.4,2] for the special purpose of investigating excited states of F centers in alkali halides. It has since been developed further for a more general use to study EPR and ENDOR of ground and excited states of many types of defects, and will, therefore, be described here in more detail. Several of the more critical components of the MCDA-type spectrometer are discussed in view of experience gathered in the Paderborn group over the last ten years. The MCDA-type spectrometer requires a higher degree of precision for the optical components compared to the emission-type spectrometer. It is usually not used for conventional detection of EPR, although this would be possible by including a microwave bridge. The emission-type spectrometer is usually also operated as a conventional EPR spectrometer.

Keywords

Linear Polarizer Circular Polarization Magnetic Circular Dichroism Experimental Aspect Linear Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 9.1
    B.C. Cavenett: Adv. in Phys. 30, 475 (1981)CrossRefADSGoogle Scholar
  2. 9.2
    S. Geschwind: “Optical Techniques in EPR in Solids”, in Electron Paramagnetic Resonance, ed. by S. Geschwind (Plenum, New York 1972)Google Scholar
  3. 9.3
    K.P. Dinse, C.J. Winscon: “Optically Detected ENDOR Spectroscopy”, in Triplet State ODMR Spectroscopy, ed. by R.H. Clarke (Wiley, New York 1984)Google Scholar
  4. 9.4
    L.F. Mollenauer, S. Pan: Phys. Rev. B 6, 772 (1972)CrossRefADSGoogle Scholar
  5. 9.5 F. Lohse: private communicationGoogle Scholar
  6. 9.6
    H.W. van Kesteren, W.T. Wenckebach, J.A.J.M. Disselhorst: J. Phys. E: Sci. Instrum. 20, 648 (1987)CrossRefADSGoogle Scholar
  7. 9.7
    J. Donecker, J. Kluge: J. Phys. D: Appl. Phys.19, L 199 (1986)Google Scholar
  8. 9.8
    J.J. Davies: Contemp. Phys. 17, 275 (1976)CrossRefADSGoogle Scholar
  9. 9.9
    S.N. Jasperson, S.E. Schnattely: Rev. Sei. Instrum. 40, 761 (1969)CrossRefADSGoogle Scholar
  10. 9.10
    R.M.A. Azzam, N.M. Bashara: Ellipsometry and Polarized Light (North— Holland, Amsterdam, New York, Oxford 1977)Google Scholar
  11. 9.11
    J.C. Kemp: J. Opt. Soc. Am. 59, 950 (1970)ADSGoogle Scholar
  12. 9.12
    J.C. Kemp: in Polarized Light and Its Interaction with Modulating Devices ed. Hinds International Inc. Hillsboro, USA, 1987Google Scholar
  13. 9.13
    M. Billardon, J. Badoz: C. R. Acad. Sei. Paris 262, 1672 (1966)Google Scholar
  14. 9.14
    L.F. Mollenauer, D. Downie, H. Engstrom, W B. Grant, Appl. Optics 8, 661 (1969)CrossRefADSGoogle Scholar
  15. 9.15
    R.M.A. Azzam: J. Opt. Soc. Am.68, 1756 (1978)CrossRefADSGoogle Scholar
  16. 9.16
    Y. Shindo, M. Nakagawa: Rev. Sei. Instrum.56, 32 (1985)CrossRefADSGoogle Scholar
  17. 9.17
    R. Takakuwa: Jasco Application Notes 1/4, 1 (Japan Spectroscopic Co. Ltd., Tokyo)Google Scholar
  18. 9.18
    K. Tuzimura, T. Konno, H. Meguro, M. Hatano, T. Murakami, K. Ka- shiwabara, K. Saito, Y. Kondo, T.M. Suzuki: Anal. Biochem.81, 167 (1977)CrossRefGoogle Scholar
  19. 9.19
    R.C. Jones: J. Opt. Soc. Am.38, 671 (1948)CrossRefADSGoogle Scholar
  20. 9.20
    H. Kubo, R. Nagata: J. Opt. Soc. Am.73, 1719 (1983)CrossRefADSGoogle Scholar
  21. 9.21
    H. Kubo, R. Nagata: J. Opt. Soc. Am. A 2,30 (1985)CrossRefADSGoogle Scholar
  22. 9.22
    H.G. Jerrard: Optics and Laser Technology, (Butterworth & Co. 1982)Google Scholar
  23. 9.23
    B. Drevillon, J. Perrin, R. Marbot, A. Violet, J.L. Dalby: Rev. Sei. Instrum. 53, 969 (1982)CrossRefADSGoogle Scholar
  24. 9.24
    S.C. Rashleigh, R.H. Stolen: Laser Focus, 1983Google Scholar
  25. 9.25
    J.M. Beckers: Applied Optics 10, 973 (1971)CrossRefADSGoogle Scholar
  26. 9.26
    L.F. Mollenauer, C.D. Grandt, H. Panepucci: Rev. Sei. Instrum. 39, 1958 (1968)CrossRefADSGoogle Scholar
  27. 9.27
    O. Burghaus, E. Haindl, M. Plato, K. Möbius: J. Phys. E: Sei. Instrum. 18, 294 (1985)CrossRefADSGoogle Scholar
  28. 9.28
    M. Charnel, R. Chicault, Y. Merle d’Aubigné: J. Phys. E: Sei. Instrum. 9, 87 (1967)ADSGoogle Scholar
  29. 9.29
    E.H. Izen, F.A. Modine: Rev. Sei. Instrum.43, 1563 (1972)CrossRefGoogle Scholar
  30. 9.30
    M. Gehrtz, C. Bräuchle, J. Voitländer: J. Phys. E: Sei. Instrum. 17, 1046 (1984)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Johann-Martin Spaeth
    • 1
  • Jürgen R. Niklas
    • 1
  • Ralph H. Bartram
    • 2
  1. 1.Fachbereich PhysikUniversität-GesamthochschulePaderbornFed. Rep. of Germany
  2. 2.Department of PhysicsUniversity of ConnecticutStorrsUSA

Personalised recommendations