Skip to main content

Optical Detection of Electron Paramagnetic Resonance

  • Chapter
Structural Analysis of Point Defects in Solids

Abstract

Optical detection of EPR (ODEPR) differs from conventional detection basically in that a microwave-induced repopulation of paramagnetic Zeeman levels is indirectly detected by a change in some property of light, which is either absorbed or emitted by the defect under study. The light properties are polarizations or intensities, which are measured to detect EPR. These experiments are all double resonance experiments, one resonance being an optical resonance, the other one an EPR resonance. The optical detection of EPR has a number of interesting new features. One such feature is that, by virtue of the quantum transformation for detecting the signals from 1010 Hz to 1015 Hz, there is an enormous gain in sensitivity by several orders of magnitude. Thus, it becomes possible to study a very small number of defects. Originally, this sensitivity enhancement was used to study sparsely populated excited states of defects, and was, in fact, the major application of the optical detection of EPR. This aspect will not be discussed here in great detail. For an excellent review on the optical techniques of EPR, in particular the ODEPR of excited defect states, the reader is referred to the article by Geschwind [4.1]. It became evident only recently that the application of optical techniques to the detection of EPR is also very useful for the study of ground states of defects, especially in connection with materials science problems such as the structure determination of defects and their influence on bulk properties of solids. In this way, optical properties can be directly associated with particular defects and their structures. Properties connected with the energy levels of defects in the gap, such as electrical properties, which are of specific interest in semiconductor physics, can also be correlated with their EPR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. S. Geschwind: ”Optical Techniques in EPR in Solids”, in Electron Paramagnetic Resonance, ed. by S. Geschwind (Plenum, New York 1972)

    Google Scholar 

  2. I.Y. Chan: ”Zero Field ODMR Techniques - Phosphorescence Detection”, in Triplet State ODMR Spectroscopy: Techniques and Applications to Biophysical Systems, ed. by R.H. Clarke (Wiley, New York 1982)

    Google Scholar 

  3. D.W. Pratt: ”ODMR Studies of Excited Triplet States in High Fields”, in Triplet state ODMR Spectroscopy, ed. by R.H. Clarke (Wiley, New York 1982)

    Google Scholar 

  4. D.B. Fichten: ”Zero Phonon Transitions”, in Physics of Color Centers, ed. by W.B. Fowler (Academic, New York 1968) Chap. 5

    Google Scholar 

  5. H. Henry, C.P. Slichter: ”Moments in the Degeneracy of Optical Spectra”, in Physics of Color Centers, ed. by W.B. Fowler (Academic, New York 1968) Chap. 6

    Google Scholar 

  6. J. Bourgoin, M. Lannoo: Point Defects in Semiconductors II: Experimental Aspects, Springer Ser. in Solid State Sci., Vol. 35 (Springer, Berlin, Heidelberg, New York 1983)

    Google Scholar 

  7. M. Lannoo, J.C. Bourgoin: ”Point Defects in Semconductors I, Theoretical Aspects”, Springer Ser. Solid State Sci., Vol. 22 (Springer, Berlin, Heidelberg, New York 1981)

    Google Scholar 

  8. B.K. Meyer, J.-M. Spaeth: Phys. Rev. B 32, 1409 (1985)

    Article  ADS  Google Scholar 

  9. A.M. Stoneham: Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors (Clarendon, Oxford 1975)

    Google Scholar 

  10. T.H. Keil: Phys. Rev. A 140, 601 (1965)

    ADS  Google Scholar 

  11. B. Henderson, F. Imbush: Contemp. Phys. 29, 235 (1988)

    Article  ADS  Google Scholar 

  12. D.B. Fitchen, R.H. Silsbey, T.A. Fulton, E.L. Wolf: Phys. Rev. Lett. 11, 2775 (1963)

    Article  Google Scholar 

  13. A.E. Hughes: ”Optical Techniques and an Introduction to the Symmetry Properties of Point Defects”, in Defects and their Structure in Nonmetallic Solids, ed. by B. Henderson and A.E. Hughes, ASI series B19 (Plenum, New York 1976)

    Google Scholar 

  14. A.A. Maradudin: Solid State Physics 18, 274 (Academic, New York 1966)

    Google Scholar 

  15. P.J. Dean, D.C. Herbert: ”Bound Excitons in Semiconductors”, in Excitons, ed. by Y.K. Cho, Topics in Current Phys., Vol. 14 (Springer, Berlin, Heidelberg, New York 1979) Chap. 3

    Chapter  Google Scholar 

  16. G.L. Bir, E.E. Pikus: Symmetry and Strain Induced Effects in Semiconductors (Keter, Jerusalem 1974)

    Google Scholar 

  17. A.A. Kaplyanskii: Optics Spectroscopy 16, 329 (1964)

    ADS  Google Scholar 

  18. D.L. Dexter, C.C. Klick, G.A. Russel: Phys. Rev. 100, 603 (1955)

    Article  ADS  Google Scholar 

  19. R.H. Bartram, A.M. Stoneham: Solid State Commun. 17, 1593 (1975)

    Article  ADS  Google Scholar 

  20. A.A. Jahn, E. Teller: Proc. Roy. Soc. A 161, 220 (1937)

    Article  ADS  Google Scholar 

  21. A.A. Jahn: Proc. Roy. Soc. A 164, 117 (1938)

    Article  ADS  Google Scholar 

  22. F.S. Ham: ”Jahn-Teller Effects in Electron Paramagnetic Resonance Spectra”, in Electron Paramagnetic Resonance, ed. by S. Geschwind (Plenum, New York 1972)

    Google Scholar 

  23. R. Engelman: The Jahn-Teller Effects in Molecules and Crystals (Wiley, New York 1972)

    Google Scholar 

  24. N.V. Karlov, J. Margerie, V. Merle d’Aubigne: J. Phys. Rad. 24, 77 (1963)

    Google Scholar 

  25. L.F. Mollenauer, S. Pan: Phys. Rev. B 6, 772 (1972)

    Article  ADS  Google Scholar 

  26. L.I. Schiff: Quantum Mechanics (McGraw-Hill, New York 1949)

    Google Scholar 

  27. H. Paus: ”Farbzentren und zweiwertige Fremdkationen in Alkalihalogenid- Kristallen”; Habilitationsschrift, Univ. Stuttgart (1980)

    Google Scholar 

  28. F.J. Ahlers, F. Lohse, J.-M. Spaeth, L.F. Mollenauer: Phys. Rev. B 28, 1249 (1983)

    Article  ADS  Google Scholar 

  29. W. Gellermann, F. Lüty, C.R. Pollack: Opt. Commun. 39, 391 (1981)

    Article  ADS  Google Scholar 

  30. B.K. Meyer, J.-M. Spaeth, M. Scheffler: Phys. Rev. Lett. 52, 851 (1984)

    Article  ADS  Google Scholar 

  31. B.K. Meyer, D.M. Hofmann, J.R. Niklas and J.-M. Spaeth: Phys. Rev. B 36, 1332 (1987)

    Article  ADS  Google Scholar 

  32. M. Fockele, F. Lohse, J.-M. Spaeth, R.H. Bartram: J. Phys.: Condens. Matter 1, 13 (1989)

    Article  ADS  Google Scholar 

  33. M. Fockele, F. Lohse, J.-M. Spaeth: Israel Journ. of Chem. 29,13 (1989)

    Google Scholar 

  34. F.J. Ahlers, F. Lohse, Th. Hangleiter, J.-M. Spaeth, R.H. Bartram: J. Phys. C: Solid State Phys. 17, 4877 (1984)

    Article  ADS  Google Scholar 

  35. B. Clerjaud, C. Nand, B. Deveaud, B. Lambert, B. Plot, G. Bremond, C. Benjeddon, G. Guillot, A. Nouailhat: J. Appl. Phys. 59, 4207 (1985)

    Article  ADS  Google Scholar 

  36. A. Görger, B.K. Meyer, J.-M. Spaeth, A. Hennel: ”Transition Elements in III-V Semiconductors - A Study With Optically Detected Magnetic Resonance”, in Semi-Insulating III-V Materials, ed. by G. Grossmann and L. Ledebo (Adam Hilger, Bristol 1988) p. 331

    Google Scholar 

  37. M. Bauender, B.K. Meyer, J. Schneider: Mat. Sei. Forum 38–41, 797 (1989)

    Article  Google Scholar 

  38. G. Hörsch, H.J. Paus: Opt. Commun. 60, 69 (1987)

    Article  Google Scholar 

  39. M. Heinemann, B.K. Meyer, J.-M. Spaeth, K. Löhnert: ”The occupation of the two charge states of EL2 in LEC-grown GaAs-Wafers - a mapping investigation”, in Defect Recognition and Image Processing in III-V Compounds II, ed. by E.R. Weber (Elsevier, New York 1987)

    Google Scholar 

  40. J.-M. Spaeth, D.M. Hofmann, M. Heinemann, B.K. Meyer: in J. Int. Phys. Conf. Ser. 91, 391 (1988) Chap. 4

    Google Scholar 

  41. H. Winnacker, Th. Vetter, F.X. Zach: ”Mapping of the Deep Donor EL2 in Semi-Insulating GaAs in both its Charge States: EL2° and EL2+”, in Semi-Insulating III-V Materials, ed. by G. Grossmann and L. Ledebo (Adam Hilger, Bristol 1988) p. 583

    Google Scholar 

  42. H. Pannepucci, L.F. Mollenauer: Phys. Rev. B 178, 589 (1969)

    Article  ADS  Google Scholar 

  43. E.S. Sabitzky, C.H. Anderson: Phys. Rev. B 1, 1028 (1970)

    ADS  Google Scholar 

  44. M. Heinemann: ”Homogenität und thermische Stabilität von EL2- Defekten in Galliumarsenid”; Diplomarbeit, Universität-GH Paderborn (1987)

    Google Scholar 

  45. B.K. Meyer, J.-M. Spaeth: Defect and Diffusion Forum (Trans. Tech. Publ.) 62/63, 39 (1989)

    Google Scholar 

  46. J. Hage, J.R. Niklas, J.-M. Spaeth: J. Electron. Mater. A 14, 1051 (1984)

    Google Scholar 

  47. J. Hage, J.R. Niklas, J.-M. Spaeth: J. Phys. C: Semcond. Sei. and Tech- nol. 4, 773 (1989)

    ADS  Google Scholar 

  48. H. Katayama-Yoshida, A. Zunger: Phys. Rev. B 33, 2961 (1986)

    Article  ADS  Google Scholar 

  49. A. Abragam, B. Bleaney: Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford 1970) p. 797

    Google Scholar 

  50. A. Juhl, A. Hoffman, D. Bimberg, H.J. Schulz: Appl. Phys. Lett. 50, 1292 (1987)

    Article  ADS  Google Scholar 

  51. A. Görger, J.-M. Spaeth: Semicond. Sei. Technol. 6, 800 (1991)

    Article  ADS  Google Scholar 

  52. J.-M. Spaeth, F. Lohse: J. Phys. Chem. Sol. 51, 861 (1990)

    Article  ADS  Google Scholar 

  53. P.D. Devor, I.J. D’Haenens, C.K. Asawa: Phys. Rev. Lett. 8, 432 (1962)

    Article  ADS  Google Scholar 

  54. C. Baldacchini, U.M. Grassano, A. Tanga: Phys. Rev. B 16, 5570 (1977)

    Article  ADS  Google Scholar 

  55. A. Winnacker, K.E. Mauser, B. Niesert: Z. Physik B 26, 97 (1977)

    Article  ADS  Google Scholar 

  56. K.E. Mauser, B. Niesert, A. Winnacker: Z. Physik B 26, 107 (1977)

    Article  ADS  Google Scholar 

  57. H. Ohkura: Crystal Lattice Defects and Amorphous Materials 12, 401 (1985)

    Google Scholar 

  58. H.J. Reyer, K. Hahn, Th. Vetter, A. Winnacker: Z. Phys. B 33, 357 (1979)

    Article  ADS  Google Scholar 

  59. F.J. Ahlers, J.-M. Spaeth: J. Phys. C: Solid State Phys. 19, 4693 (1986)

    Article  ADS  Google Scholar 

  60. B.K. Meyer, G. Heder, F. Lohse, J.-M. Spaeth: Solid State Commun. 43, 325 (1982)

    Article  ADS  Google Scholar 

  61. B.K. Meyer, J.-M. Spaeth: J. Phys. C: Solid State Phys. 17, 2213 (1984)

    Article  ADS  Google Scholar 

  62. C. Hermann, G. Lampel: Phys. Rev. Lett. 27, 373 (1971)

    Article  ADS  Google Scholar 

  63. C. Weisbuch, C. Hermann: Phys. Rev. B 15, 816 (1977)

    Article  ADS  Google Scholar 

  64. B.C. Cavenett: Adv. in Phys. 30, 475 (1981)

    Article  ADS  Google Scholar 

  65. J.E. Nicholls, J.J. Davies, B.C. Cavenett, J.R. James, D.J. Dunstan: J. Phys. C: Solid State Phys. 12, 361 (1979)

    Article  ADS  Google Scholar 

  66. B.K. Meyer, Th. Hangleiter, J.-M. Spaeth, G. Strauch, Th. Zell, A. Winnacker, R.H. Bartram: J. Phys. C: Solid State Phys. 18, 1503 (1985)

    Article  ADS  Google Scholar 

  67. D.G. Thomas, M. Gershenson, F.A. Trumbore: Phys. Rev. A 133, 269 (1964)

    ADS  Google Scholar 

  68. P.J. Dean: in Progress in Solid State Chemistry, Vol. 8, ed. by J.O. McCalden and Y. Somorjai (Pergamon, Oxford 1973) p. 1

    Google Scholar 

  69. D. Block, A. Hervé, R.T. Cox: Phys. Rev. B 25, 6049 (1982)

    Article  ADS  Google Scholar 

  70. J.J. Davies: J. Phys. C: Solid State Phys. 16, 867 (1983)

    Article  ADS  Google Scholar 

  71. J. Kluge, J. Donecker: Phys. Stat. Sol. (a) 81, 675 (1984)

    Article  ADS  Google Scholar 

  72. P. Edel, C. Hennies, Y. Merle d’Aubigné, R. Romestain, Y. Twarowski: Phys. Rev. Lett. 28, 1268 (1972)

    Article  ADS  Google Scholar 

  73. P. Dawson, C.M. McDonagh, B. Henderson, L.S. Welch: J. Phys. C: Solid State Phys. 11, 983 (1978)

    Article  ADS  Google Scholar 

  74. W.B. Lynch, O.W. Pratt: Magn. Res. Rev. (GB) 10, 111 (1985)

    Google Scholar 

  75. D. Henderson: Semicond. Insulators 3, 299 (1978)

    Google Scholar 

  76. F.J. Ahlers, F. Lohse, J.-M. Spaeth: Solid State Commun. 43, 321 (1982)

    Article  ADS  Google Scholar 

  77. P.J. Dean, W. Schairer, M. Lorentz, T.N. Morgan: J. Lum. 9, 343 (1974)

    Article  ADS  Google Scholar 

  78. J.J. Lappe, ”Magnetische Resonanzuntersuchungen an extrinsischen und intrinsischen Donatoren in Galliumphosphid”; Doctoral Dissertation, Universität-GH Paderborn (1990)

    Google Scholar 

  79. P.J. Dean, D.C. Herbert: ”Bound Excitons in Semiconductors”, in Excitons, ed. by Y.K. Cho, Topics in Current Phys., Vol. 14 (Springer, Berlin, Heidelberg, New York 1979) p. 105

    Chapter  Google Scholar 

  80. J.H. Schulman, W.D. Compton: Color Centers in Solids (Pergamon, New York 1962) p. 56

    Google Scholar 

  81. K.S. Song, R.T. Williams: Self Trapped Excitons (Springer, Berlin, Heidelberg, New York 1992) p. 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spaeth, JM., Niklas, J.R., Bartram, R.H. (1992). Optical Detection of Electron Paramagnetic Resonance. In: Structural Analysis of Point Defects in Solids. Springer Series in Solid-State Sciences, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84405-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84405-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84407-2

  • Online ISBN: 978-3-642-84405-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics