Electron Paramagnetic Resonance Spectra

  • Johann-Martin Spaeth
  • Jürgen R. Niklas
  • Ralph H. Bartram
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 43)


Electron Paramagnetic Resonance (EPR) spectra can be measured in unperturbed crystals which contain paramagnetic ions or molecules as constituents, such as CUSO4 with paramagnetic Cu++ ions, and in crystals containing paramagnetic defects. In this chapter, typical EPR spectra of defects will be discussed in view of the application of multiple magnetic resonance methods to be discussed later. It is the purpose of this chapter mainly to discuss which kind of structural information can be obtained from the EPR spectra. Particular emphasis is given to a discussion of the EPR line width and its origin. It will be seen later, that the structural information from the EPR spectra is needed for an unambiguous analysis of the ENDOR spectra. We must restrict the discussion to “typical” spectra, in the sense that only those interactions of the unpaired electrons or holes which often occur are discussed, and the discussion is limited to simple quantum mechanical solutions of the Schroedinger equation. There is such a variety of possible spectra that a more comprehensive discussion would be beyond the scope and intention of this book (for more information see textbooks on EPR quoted in Chap. 1).


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Line ENDOR Spectrum Center Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    A. Abragam, B. Bleaney: Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford 1970)Google Scholar
  2. 3.2
    G.E. Pake, T.L. Estle: The Physical Principles of Electron Paramagnetic Resonance, 2nd ed. (Benjamin, New York 1973)Google Scholar
  3. 3.3
    W. Känzig, M.H. Cohen: Phys. Rev. Lett. 3, 509 (1959)CrossRefADSGoogle Scholar
  4. 3.4
    H. Seidel, H.C. Wolf: ”ESR and ENDOR Spectroscopy of Color Centers in Alkali Halide Crystals”, in Physics of Color Centers, ed. by W.B. Fowler (Academic, New York 1968)Google Scholar
  5. 3.5
    H.R. Zeller, W. Känzig: Helv. Phys. Acta. 40, 845 (1967)Google Scholar
  6. 3.6
    S.H. Muller, M. Springer, E.G. Sievers, C.A.J. Ammerlaan: Solid State Commun. 25, 987 (1978)CrossRefADSGoogle Scholar
  7. 3.7
    J. Michel, N. Meilwes, J.R. Niklas, J.-M. Spaeth: in Shallow Impurities in Semiconductors, Proc. of the 3rd Int. Conf., Lingköping, 1988Google Scholar
  8. 3.8
    J. Michel, J.R. Niklas, J.-M. Spaeth: Phys. Rev. B 40, 1732 (1989)CrossRefADSGoogle Scholar
  9. 3.9
    C. Rudowicz: Magn. Res. Rev. 13, 1 (1987)Google Scholar
  10. 3.10
    H.H. Towner, J.M. Kim, H.S. Story: J. Chem. Phys. 56, 3676 (1971)CrossRefADSGoogle Scholar
  11. 3.11
    H. Söthe: private communicationGoogle Scholar
  12. 3.12
    H. Söthe, L.G. Rowan, J.-M. Spaeth: J. Phys.: Condens. Matter 23, 3591 (1989)CrossRefGoogle Scholar
  13. 3.13
    U. Kaufmann, J. Schneider: Solid State Commun. 25, 1113 (1978)CrossRefADSGoogle Scholar
  14. 3.14
    Y. Ueda, J.R. Niklas, J.-M. Spaeth, U. Kaufmann and J. Schneider: Solid State Commun. 46, 127 (1983)CrossRefADSGoogle Scholar
  15. 3.15
    J.J. Rousseau: ”Etude de la Dynamique du Réseau et des Changements de Phase Structuraux dans les Fluopérovskites”; Doctoral Dissertation, Université du Maine et Université Pierre et Marie Curie, Paris (1977)Google Scholar
  16. 3.16
    P. Studzinski: ”Paramagnetische Ionen zur Untersuchung struktureller Phasenübergänge — eine ENDOR-Untersuchung”; Doctoral Dissertation, Universität-GH Paderborn (1985)Google Scholar
  17. 3.17
    F. Agullo-Lopéz, C.R.A. Catlow, P.D. Townsend: ”Point Defects in Materials” (Academic, London 1988) Chap. 6Google Scholar
  18. 3.18
    C.P. Slichter: Principles of Magnetic Resonance, Springer Ser. in Solid State Sci., Vol. 1 3rd ed. (Springer, Berlin, Heidelberg, New York 1990)Google Scholar
  19. 3.19
    H.G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Wörner, E. Holm, E. Sirtl, P. Wagner: Phys. Rev. B 24, 4571 (1981)CrossRefADSGoogle Scholar
  20. 3.20
    R. Wörner, O.F. Schirmer: Solid State Commun. 51, 665 (1984)CrossRefGoogle Scholar
  21. 3.21
    S. Greulich-Weber, J.R. Niklas, J.-M. Spaeth: J. Phys.: Condens. Matter 35, 1 (1989)Google Scholar
  22. 3.22
    E. Goovaerts, J. Andriessen, S.V. Nistor, D. Schoemaker: Phys. Rev. B 24, 29 (1981)CrossRefADSGoogle Scholar
  23. 3.23
    F.J. Ahlers, J.-M. Spaeth, J. Phys. C: Solid State Phys. 19, 4693 (1986)CrossRefADSGoogle Scholar
  24. 3.24
    J. Casas-Gonzáles, H.W. den Hartog, R. Alcalá: Phys. Rev. B 21, 3826 (1980)CrossRefADSGoogle Scholar
  25. 3.25
    P. Studzinski, J. Casas-Gonzáles, J.-M. Spaeth: J. Phys. C: Solid State Phys. 17, 5411 (1984)CrossRefADSGoogle Scholar
  26. 3.26
    E. Zorita: ”Espectroscopia de resonancia magnética de impurezas de niquel en crystales de KMgF3, RbCaF3 y K2MgF4”; Doctoral Dissertation, Universidad de Zaragoza (1988)Google Scholar
  27. 3.27
    E. Zorita, P.J. Alonso, R. Alcalá: Phys. Rev. B 35, 3116 (1987)CrossRefADSGoogle Scholar
  28. 3.28
    J.-M. Spaeth: Z. Physik 192, 107 (1966)CrossRefADSGoogle Scholar
  29. 3.29
    G. Heder, J.R. Niklas, J.-M. Spaeth: Phys. Stat. Sol. (b) 100, 567 (1980)CrossRefADSGoogle Scholar
  30. 3.30
    J.-M. Spaeth: ”Atomic Hydrogen as a Model Defect in Alkali Halides”, in Defects in Insulating Crystals, ed. by V.M. Tuchkevich and K.K. Shvarts (Springer, Berlin, Heidelberg, New York 1981) p. 232Google Scholar
  31. 3.31
    G. Heder, J.-M. Spaeth: Phys. Stat. Sol. (b) 125, 523 (1984)CrossRefADSGoogle Scholar
  32. 3.32
    L.O. Schwan, W. Geigle, H. Paus: Z. Phys. B 35, 43 (1979)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Johann-Martin Spaeth
    • 1
  • Jürgen R. Niklas
    • 1
  • Ralph H. Bartram
    • 2
  1. 1.Fachbereich PhysikUniversität-GesamthochschulePaderbornFed. Rep. of Germany
  2. 2.Department of PhysicsUniversity of ConnecticutStorrsUSA

Personalised recommendations