Turbulence Control

  • D. W. Bechert
Conference paper


Turbulence is quite insensitive to attempts to change or to control it. In this respect, it is very different from laminar or transitional flows. The high resilience of turbulence to perturbations results from the fact that turbulence is the product of strong hydrodynamical instabilities which lead to nonlinear saturation. As in the case of an electronic amplifier in its nonlinear saturation regime, we cannot expect dramatic changes of the output signal caused by small changes of the input signal. Nevertheless, there are several examples where turbulence fluctuation levels and noise radiation can be enhanced artifically. On the other hand, it is rather difficult to reduce fluctuation levels and related quantities like the turbulent shear stress.


Wall Shear Stress Shear Layer Turbulent Boundary Layer Ring Vortex Drag Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bermann, N.S.: Drag reduction by polymers. Ann. Rev. Fluid Mech. (M. van Dyke, ed.), 10 47–64 (1978).CrossRefADSGoogle Scholar
  2. [2]
    Sellin, R.H.J. & Moses, R.T., eds.: Drag reduction in fluid flows. Proceedings of the 4th. International Conference of Drag Reduction, Davos 31. July - 3. August 1989. Printed by: Ellis Horwood Ltd., Chichester, England.Google Scholar
  3. [3]
    Hoyt, J.W.; Hydrodynamic drag reduction due to fish slimes. In: Swimming and flying in nature, Vol. 2., Wu, T.Y.T. & Brokaw, C.J., Plenum Press, New York 1975.Google Scholar
  4. [4]
    Virk, P.S., Mickley, H.S., and Smith, K.A.: The ultimate asymptote and mean flow structure in Tom’s phenomenon. J. Appl. Mech.,Trans. ASME, Series E, 37 488–493 (1970).CrossRefGoogle Scholar
  5. [5]
    Crow, S.C. & Champagne, F.H.: Orderly structure in jet turbulence. J. Fluid Mech. 48 part 3, 5457–591 (1971).CrossRefGoogle Scholar
  6. [6]
    Bechert, D.W.: Die Steuerung eines ebenen turbulenten Freistrahls durch eine seitliche Wechselströmung, erzeugt in einem Schallfeld. Z. Flugwiss. 24 Heft 1, 2533 1976.Google Scholar
  7. [7]
    Oster, D. & Wygnanski, I.: The forced mixing layer between parallel streams J. Fluid Mech. 123 91–130 (1982).CrossRefADSGoogle Scholar
  8. [8]
    Fiedler, H.E. and Mensing, P.: The plane turbulent shear layer with periodic excitation. J. Fluid Mech. 150 281–309 (1985).CrossRefADSGoogle Scholar
  9. [9]
    Ho, C.H. & Huerre, P.: Pertubed free shear layers. Ann. Rev. Fluid Mech. 1984, 365–424.Google Scholar
  10. [10]
    Bechert, D.W.: Excitation of instability waves in free shear layers. Part 1, Theory. J. Fluid Mech. 186, 47–62 (1988).CrossRefMATHADSGoogle Scholar
  11. [11]
    Fourgeuette, D.C. & Long, M.B.: Highly localized pressure perturbations induced by laser absorptive heating in the shear layer of a gas jet. Optics letters, 8, 605–607, (1983).CrossRefADSGoogle Scholar
  12. [12]
    Michalke, A.: Instabilität eines kompressiblen runden Freistrahls unter Berück-sichtigung des Einflusses der Strahlgrenzschichtdicke. Z. Flugwiss. 19 319–28 (1971).MATHGoogle Scholar
  13. [13]
    Vlasow, Y.U. & Ginevski, A.S.: Generation and suppresison of turbulence in an axisymmetric turbulent jet in the presence of an acoustic influence. NASA Tech. Trans. F 15721 (1974).Google Scholar
  14. [14]
    Moore, C.J.: The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80, 321–367, (1977).CrossRefADSGoogle Scholar
  15. [15]
    Bechert, D.W. & Pfizenmaier, E.: On the amplification of broadband jet noise by pure tone excitation. J. Sound Vib. 43 581–587, (1975).CrossRefADSGoogle Scholar
  16. [16]
    Zaman, K.B.M.Q. & Hussain, A.K.M.F.: Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133–159, (1981).CrossRefADSGoogle Scholar
  17. [17]
    Banerian, G.: Status of some current research in jet noise. AIAA Journal 16, No. 9, 877–888 (1978).CrossRefADSGoogle Scholar
  18. [18]
    Wilkinson, S.P., Anders, J.B., Lazos, B.S. & Bushnell, D.M.: Turbulent drag reduction research at NASA Langley: progress and plans. Int. J. Heat and Fluid Flow, 9 No. 3, 266–277 (1988).CrossRefGoogle Scholar
  19. [19]
    Corke, T.C.: A new view on origin, role and manipulation of large scales in turbulent boundary layers. Ph. D. Thesis, Illinois Institute of Technology, Chicago, III., Dec. 1981.Google Scholar
  20. [20]
    Plesniak, M.W.: Optimized manipulation of turbulent boundary layers aimed at net drag reduction. M.S. Thesis,Illinois Institute of Technology, Chicago III., Dec. 1984.Google Scholar
  21. [21]
    Guezennec, Y.G. & Nagib, H.M.: Mechanisms leading to net drag reduction in manipulated turbulent boudary layers, AIAA Journal 28, No. 2, 245–252, (1990).CrossRefADSGoogle Scholar
  22. [22]
    Poll, D.I.A.: A study of LEBU performance by direct total-force measurements. Proc.: Turbulent drag reduction by passive means. The Royal Aeronautical Society, London. 15.-17. Sept. 1987.Google Scholar
  23. [23]
    Sahlin, A., Alfredsson, P.H. & Johanson, A.W.: Direct drag measurements for a flat plate with passive boundary layer manipulators. Physics of Fluids, 29, 696–700, (1986).CrossRefADSGoogle Scholar
  24. [24]
    Sahlin, A., Alfredsson, P.H. & Johanson, A.W.: The possibility of drag reduction by outer layer manipulators in turbulent boundary layers. Phys. Fluids, 31, 2814–20, (1988).CrossRefADSGoogle Scholar
  25. [25]
    Anders, J.B.: LEBU drag reduction in high Reynolds number boundary layers. AIAA-Paper 89–1011, (1989).Google Scholar
  26. [26]
    Lynn, T.B., Gerich, D.A. & Bechert, D.W.: LEBU-manipulated flat plate boundary layers: Skin friction and device drag measured directly. Paper presented at the IAHR Drag reduction “89 conference, Davos, Switzerland, July 31-August 3, 1989. And, by the same authors: Direct drag measurements in a LEBU manipulated flat-plate boundary layer. 3rd. European Turbulence Conference, Stockholm 3.- 6. July 1990.Google Scholar
  27. [27]
    Katzmayr, R.: Uber das Verhalten von Flügelflächen bei periodischen Anderungen der Geschwindigkeitsrichtung. Zeitschrift fir Flugtechnik and Motorluftschiffahrt. 6. Heft, 13. Jahrg., 80–82, (1922). and: ’T. Heft, 13. Jahrg., 95–101, (1922).Google Scholar
  28. [28]
    Anders, J.B. & Watson, R.D.: Airfoil large-eddy breakup devices for turbulent drag reduction. AIAA-Paper 85–0520, (1985).Google Scholar
  29. [29]
    Alving, A.E., Smits, A.J, & Watmuff, J.H.: Turbulent boudary layer relaxation from convex curvature. J. Fluid Mech. 211 529–556, (1990).CrossRefADSGoogle Scholar
  30. [30]
    Moin, P. & Kim, J.: The structure of the vorticity field in turbulent channel flow., Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155 441–464, (1985).CrossRefADSGoogle Scholar
  31. [31]
    Liu, C.K., Kline, S.J. & Johnston, J.P.: An experimental study of turbulent boundary layer on rough walls. Stanford University, Dept. Mech. Eng., Rept. MD-15, July 1966.Google Scholar
  32. [32]
    Walsh, M.J.: Drag characteristics of V-Groove and transverse curvature riblets. In: Viscous flow drag reduction (ed. G.R. Hough), Progress in Astronautics and Aeronautics,vol. 72., AIAA, (1980).Google Scholar
  33. [33]
    Walsh, M.J. & Lindemann, A.M.: Optimization and application of riblets for turbulent drag reduction. AIAA-Paper 84–0347 (1984).Google Scholar
  34. [34]
    Walsh, M.J., Sellers, W.L. & McGinley, C.B.: Riblet drag at flight conditions. J. of Aircraft 26 No 6, 570–575 (1989).CrossRefGoogle Scholar
  35. [35]
    Reif, W.E. & Dinkelacker, A.: Hydrodynamics of the squamation in fast swimming sharks. Neues Jahrbuch für Geologie und Palaeontologie, Abhandlungen 164 184–187, E. Schweizerbart’sche Verlagsbuchhandlung, (1982).Google Scholar
  36. [36]
    Reif, W.E.: Squamation and ecology of sharks. Courier Forschungsinstitut Senckenberg, Frankfurt/M., No. 78, 255 p.Google Scholar
  37. [37]
    Nitschke, P.: Experimentelle Untersuchung der turbulenten Strömung in glatten und längsgerillten Rohren. Max-Planck-Institut für Strömungsforschung, Göttingen. Bericht 3 (1983). Transl.: NASA TM 77480 (1984).Google Scholar
  38. [38]
    Bechert, D.W., Hoppe, G. & Reif, W.E.: On the drag reduction of the shark skin. AIAA-Paper 85–0546 (1985).Google Scholar
  39. [39]
    Choi, K.S.: Test of drag reducing riblets on a one-third scale racing yacht. Proc.: Turbulent drag reduction by passive means. Royal Aeronautical Society, London, 15.-17. Sept. 1987.Google Scholar
  40. [40]
    McLean, J.D., George-Falvy, D.N. & Sullivan, P.P.: Flight-test of turbulent skin-friction reduction by riblets. Proc.: Turbulent drag reduction by passive means. Royal Aeronautical Society, London, 15.-17. Sept. 1987.Google Scholar
  41. [41]
    Sawyer, W.G. & Winter, K.G.: An investigation of the effect on turbulent skin friction of surfaces with streamwise grooves. Proc.: Turbulent drag reduction by passive means. Royal Aeronautical Society, London, 15.-17. Sept. 1987.Google Scholar
  42. [42]
    Bechert, D.W.: Experiments on three-dimensional riblets. Proc.: Turbulent drag reduction by passive means. Royal Aeronautical Society, London, 15.-17. Sept. 1987.Google Scholar
  43. [43]
    Bechert, D.W. & Bartenwerfer, M.: The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105–129, (1989).CrossRefADSGoogle Scholar
  44. [44]
    Bechert, D.W., Bartenwerfer, M. & Hoppe, G.: Turbulent drag reduction by nonplanar surfaces. A survey on the research at TU/DLR Berlin. Proc.: IUTAM-Symposium on structure of turbulence and drag reduction, Zürich, 25.-28. July 1989, Springer (1990).Google Scholar
  45. [45]
    Chang, P.K.: Control of flow separation: Energy conservation, operational efficiency, and safety. Hemisphere Publishing Corporation, Washington, and McGraw-Hill Book Company, New York (1976).Google Scholar
  46. [46]
    Lin, J.C. Howard, FD.G. & Selby, G.V.: Turbulent flow separation control through passive techniques. AIAA-Paper 89–0976. Note: further references on vortex generators are given in this paper.Google Scholar
  47. [47]
    Howard, F.G. & Goodman, W.L.: Axisymmetric bluff-body drag reduction through geometrical modification. Journal of Aircraft, 22, No 6, 516–522, (1985).CrossRefGoogle Scholar
  48. [48]
    Viets, H., Palmer, G.M. & Bethke, R.J.: Potential applications of forced unsteady flows. AFOSR-TR-84–0911 (1984).Google Scholar
  49. [49]
    Katz, Y., Nishri, B. & Wygnanski, L.: The delay of turbulent boundary layer separation by oscillatory active control. AIIA-Paper 89–0975, (1989).Google Scholar
  50. [50]
    van der Berg, B.: Drag reduction potentials of turbulence manipulation in adverse pressure gradient flows. National Aerospace Laboratory NLR, the Netherlands, Rept. NLR MP 86060 U, (1986).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • D. W. Bechert
    • 1
  1. 1.Abt. TurbulenzforschungBerlin 12Germany

Personalised recommendations