Advertisement

Properties of Fine Scales in High Reynolds Number Turbulence

  • Y. Gagne

Abstract

Scaling properties are one of the basic concepts used to study fully developed turbulence. We review here some recent experimental, numerical and theoretical results on the fine scale intermittency in high Reynolds number turbulence. In particular, we show that local scaling is consistent with experimental data. The scaling exponents take on a whole range of values, the most frequent ones being close to the value 1/3 predicted by Kolmogorov in 1941. Negative exponents are also obtained.

Keywords

Dissipation Scale Inertial Range Scaling Exponent Velocity Increment Vortex Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselmet, F., Gagne, Y., Hopfinger, E.J. & Antonia, R.A. 1984 J. Fluid Mech., 140, 63–89.CrossRefADSGoogle Scholar
  2. Antonia, R.A. & Chambers, A.J. 1980 Bound. Layer Meteo., 18, 399–410.CrossRefADSGoogle Scholar
  3. Antonia, R.A., Satyaprakash, B.R. & Chambers, A.J. 1982 Phys. Fluids, 25, 29–37.CrossRefADSGoogle Scholar
  4. Argoul, F., Arnédo, A., Grasseau, G., Gagne, Y., Hopfinger, E.J. & Frisch, U. 1989 Nature, 338,no 6210, 51–53.CrossRefADSGoogle Scholar
  5. Bacry, E., Améodo, A., Frisch, U., Gagne, Y. & Hopfinger, E.J. 1990 in Turbulence 89: organized structures and turbulence in fluid mechanics, Kluwer Academic Publishers.Google Scholar
  6. Batchelor, G.K. & Townsend, A.A. 1949 Proc. Roy. Soc., A 199, 238.CrossRefMATHADSGoogle Scholar
  7. Benzi, R., Paladin, G., Parisi, G. & Vulpian, A. 1984 J. Phys. A, 17, 3521–3531.CrossRefADSMathSciNetGoogle Scholar
  8. Castaing, B., Gagne, Y. & Hopfinger, E.J. 1990 Physica D in press.Google Scholar
  9. Castaing, B., Gunaratne, G., Heslot, F., Kadanof, L., Libchaber, A., Thomae, S., Wu, X-Z., Zaleski, S. & Zanetti, G 1989 J. Fluid Mech., 204, 1–27.CrossRefADSGoogle Scholar
  10. Frenkiel, F.N. & Klebanof, P.S. 1975 Bound. Layer Meteo., 8, 173–200.ADSGoogle Scholar
  11. Frisch, Ti. & Orszag S.A. 1990 in Physics Today, January, pp. 24–32.Google Scholar
  12. Frisch, U., Sulem, P.L. & Nelkin, M. 1978 J. Fluid Mech., 87, 719–736.CrossRefMATHADSGoogle Scholar
  13. Fujisaka, H. & Mori, H. 1979 Prog. Theor. Phys., 62, 54.CrossRefMATHADSMathSciNetGoogle Scholar
  14. Gagne, Y. 1987 Thèse. Université de Grenoble.Google Scholar
  15. Gagne, Y., Hopfinger, E.J. & Frisch, U. 1989 in New Trends in Nonlinear Dynamics and Pattern Forming Phenomena: The Geometry of Non Equilibrium, Plenum Press.Google Scholar
  16. Grossman, A. & Morlet, J. 1987 in Mathematics and Physics, Lecture on Recent Results, World Scientific.Google Scholar
  17. Holschneider, M. 1988 J. Stat. Phys., 50, 963.CrossRefMATHADSMathSciNetGoogle Scholar
  18. Kida, S. & Murakami, Y. 1989 Fluid Dyn. Res., 4, 347–370.CrossRefADSGoogle Scholar
  19. Kolmogorov, A.N. 1941 Dokl. Akad. Nauk SSSR, 30, 299–305.ADSGoogle Scholar
  20. Kolmogorov, A.N. 1962 J. Fluid Mech., 13, 82–85.CrossRefMATHADSMathSciNetGoogle Scholar
  21. Kraichnan, R.H. 1974 J. Fluid Mech, 62, 305–330.CrossRefMATHADSMathSciNetGoogle Scholar
  22. Kuo, A.Y-S. & Corrsin, S. 1972 J. Fluid Mech., 56, 447–479.CrossRefADSGoogle Scholar
  23. Mandelbrot, B. 1974 J. Fluid Mech., 62, 331–358.CrossRefMATHADSGoogle Scholar
  24. Mandelbrot, B. 1982 in The Fractal Geometry of Nature, Freeman and Co.MATHGoogle Scholar
  25. Meneguzzi, M. & Vincent, A. 1990 to appear in J. Fluid Mech..Google Scholar
  26. Meneveau, C. & Sreenivasan, K.R. 1987 Nuclear Physics B2 (Suppl.), 49–67.NorthHolland.Google Scholar
  27. Mestayer, P. 1980 J. Fluid Mech., 125, 475–503.CrossRefADSGoogle Scholar
  28. Métais, O. & Herring, J. 1989 J. Fluid Mech., 202, 117–148.CrossRefADSGoogle Scholar
  29. Métais, O. & Lesieur, M. 1990 submitted to J. Fluid Mech..Google Scholar
  30. Monin, A.S. & Yaglom, A.M. 1975 in Statistical Fluid Mechanics, vol. 2, MIT Press.Google Scholar
  31. Nakano, T. & Nelkin, M. 1985 Phys. Rev. A, 31, 1980–1982.CrossRefADSGoogle Scholar
  32. Novikov, E.A. & Stewart, R.W. 1964 Izv. Akad. Nauk. SSSR, Ser. Geofiz. 3, 408–413.Google Scholar
  33. Parisi, G. & Frisch, U. 1984 in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, 84. North-Holland.Google Scholar
  34. She, Z.S., Jackson, E. & Orszag, S.A. 1990 in Proc. Newport Conference on Turbulence, Springer-Verlag, (in press).Google Scholar
  35. Siggia, E.D. 1981 J. Fluid Mech., 107, 375–406.CrossRefMATHADSGoogle Scholar
  36. Smith, L.A., Fournier, J.D. & Spiegel, E.A. 1986 Phys. Lett., A114, 465–473.ADSGoogle Scholar
  37. Tennekes, H. 1968 Phys. Fluids, 11, 669–671.CrossRefADSGoogle Scholar
  38. Van Atta, C.W. & Chen, W.Y. 1970 J. Fluid Mech., 44, 145–159.CrossRefADSGoogle Scholar
  39. Van Atta, C.W. & Park, J. 1972 in Statistical Models and Turbulence, Lecture Notes in Physics, vol. 12, 402–426. Springer-Verlag.CrossRefGoogle Scholar
  40. Vasilenko, V., Lyubimtsev, M.N. & Ozmidov, R.V. 1975 Izv. Atmos. Ocean.Phys., 11, 926–932Google Scholar
  41. Vergassola, M. & Frisch, U. preprint 1990. Observatoire de Nice.Google Scholar
  42. Yamamoto, K. & Hosokawa, I. 1988 J. Phys. Soc. Japan, 57, 1532–1535.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • Y. Gagne
    • 1
  1. 1.Institut de Mécanique de GrenobleC.N.R.S.umr101, Université J. Fourier and Institut National PolytechniqueGrenoble CédexFrance

Personalised recommendations