Advertisement

The Maternotrophoblastic Interface: Uteroplacental Blood Flow

  • J. Hustin

Abstract

Soon after implantation, primary trophoblast exerts its proteolytic properties; distended vascular lakes are thus opened, and maternal red blood cells appear within the lacunae at the previllous stage [1]. Knoth and Larsen [2] were surprised to find only one example of such penetration in the ultrastructural study of their 11-day-old implanted ovum. Enders [1], quoting a Carnegie Institute publication by O’Rahilly and Muller, suggests that there is a true blood flow within lacunae of the human placental disk 10–11 days after ovulation, i.e., 4–5 days after implantation. There is now general agreement that the vessels which are tapped are venous capillaries or lakes. It is therefore obvious that only a limited quantity of blood will enter the lacunae through a retrograde effect. Kaufmann [3] has proposed that spiral arteries are tapped around days 28–29. It thus appears that some maternal blood is diverted to the lacunae, but most probably in minute quantities.

Keywords

Spiral Artery Extravillous Trophoblast Intervillous Space Uteroplacental Blood Flow Primary Trophoblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Enders AC (1989) Trophoblast differenciation during the transition from trophoblastic plate to lacunar stage of implantation in the Rhesus monkey and human. Am J Anat 186: 85–98PubMedCrossRefGoogle Scholar
  2. 2.
    Knoth M, Larsan JF (1972) Ultrastructure of a human implantation site. Acta Obstet Gynecol Scand 51: 385–393PubMedCrossRefGoogle Scholar
  3. 3.
    Kaufmann P (1981) Entwicklung der Plazenta. In: Becker V, Schiebler TH, Kublif (eds) Die Plazenta des Menschen. Thieme, Stuttgart, p 13Google Scholar
  4. 4.
    Ramsey E, Donner J (1980) Placental vasculature and circulation. Thieme, StuttgartGoogle Scholar
  5. 5.
    Boyd JD, Hamilton WJ (1970) The human placenta. Heffer, Cambridge, pp 61–91Google Scholar
  6. 6.
    Gruenwald P (1075) Maternal blood supply to the conceptus. Eur J Gynecol Reprod Biol 5: 23–24CrossRefGoogle Scholar
  7. 7.
    Pijnenborg R, Dixon G, Robertson WB, Brosens I (1980) Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta 1: 3–19PubMedCrossRefGoogle Scholar
  8. 8.
    Schaaps JP (1988) Dynamic imaging of the utero placental border in the first trimester of human pregnancy. Troph Res 3: 37–45Google Scholar
  9. 9.
    Schaaps JP (1989) Etude de la circulation utéro-trophoblastique au cours du premier trimestre de la grossesse. Thesis, University of LiegeGoogle Scholar
  10. 10.
    Gustavii B (1985) Direct vision technique for chorionic villi sampling in 100 diagnostic cases. In: Fraccaro M, Simoni G, Brambati B (eds) First trimester fetal diagnosis. Springer, Berlin Heidelberg New York, pp 46–50CrossRefGoogle Scholar
  11. 11.
    Ghirardini G, Camurri L, Gualerzi C, Fochi F, Foscolu AMS, Spreafico L, Agnelli P (1985) Chorionic villi sampling by means of a new endoscopic device. In: Fracarro M, Simoni G, Brambati B (eds) First trimester fetal diagnosis. Springer, Berlin Heidelberg New York, pp 54–59CrossRefGoogle Scholar
  12. 12.
    Hustin J, Schaaps JP (1987) Echographic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol 157: 162–168PubMedGoogle Scholar
  13. 13.
    Hustin J, Schaaps JP, Lambotte R (1988) Anatomical studies of the utero placental vascularization in the first trimester of pregnancy. Troph Res 3: 49–60Google Scholar
  14. 14.
    Gosseye S, Fox H (1984) A immunohistological comparison of the secretory capacity of villous and extra-villous trophoblast in the human placenta. Placenta 5: 329–348PubMedCrossRefGoogle Scholar
  15. 15.
    Benirschke K, Kaufmann P (1990) Pathology of the human placenta, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Moll W, Künzel W, Herberger J (1975) Hemodynamic implications of hemochorial placentation. Eur J Obstet Gynecol Reprod Biol 5: 67–74PubMedCrossRefGoogle Scholar
  17. 17.
    Aplin JD (1989) Cellular biochemistry of the endometrium. In: Wynn RM, Jollie WP (eds) Biology of the uterus, 2nd edn. Plenum, New York, pp 89–119Google Scholar
  18. 18.
    Bell SC (1988) Secretory endometrial/decidual proteins and their function in early pregnancy. J Reprod Fertil [Suppl] 36: 109–125Google Scholar
  19. 19.
    Schneider H, Luckhardt M (1989) Entwicklung der Plazenta und des uteroplazentaren Kreislaufes aus morphologischer und funktioneller Sicht. Geburtshilfe Frauenheilkd 49: 843–851PubMedCrossRefGoogle Scholar
  20. 20.
    Quinn P, Harlow GM (1978) The effect of oxygen on the development of preimplantation mouse embryos in vitro. J Exp Zool 206: 73–78PubMedCrossRefGoogle Scholar
  21. 21.
    Khurana NK, Wales RG (1989) Effect of oxygen concentration on the metabolism of [u-14c] glucose by mouse morulae and early blastocysts in vitro. Reprod Fertil Dev 1: 99–106PubMedCrossRefGoogle Scholar
  22. 22.
    Henry RJ, Cannon DC, Winkelman JN (1974) Clinical chemistry: principles and technics. Harper and Row, Hagerstown, pp 1114–1115Google Scholar
  23. 23.
    Kaplan La, Pesce AJ (1984) Clinical chemistry: theory, analysis and correlation. Mosby, St Louis, pp 623–624Google Scholar
  24. 24.
    Salvo G, Samoggia P, Petti S, Guerriero R, Marinucci M, Lazzaro D, Russo G, Mastroberardino G (1985) Haemoglobin switching in human embryos: asynchrony of —αand e — γ-globulin switches in primitive and definitive erythropoietic lineage. Nature 313: 235–238PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. Hustin

There are no affiliations available

Personalised recommendations