Advertisement

Abstract

Engineering design is an iterative process, in which the design is continuously modified until it meets the criteria set by the engineers. The traditional design process is carried out by the so called ‘trial and error’ method, in which the designer uses his experience and intuition to lead the design process. This manual based design process has the advantage that the designer’s knowledge can be utilized in the design, and this approach still dominates the design method. But as the design problem becomes more complex, design modification becomes much more difficult. Therefore there is a urgent need for a new tool to guide the design modification.

Keywords

Finite Element Method Boundary Element Boundary Element Method Shape Optimization Boundary Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Galileo Galilei Linceo, Discorsi e dimonstrazioni matematiche, Leiden 1638.Google Scholar
  2. [2]
    Lagrange, J. L., Sur des colonnes, Miscellanea Taurinensia (Royal Society of Turin), 1770–1773, 123.Google Scholar
  3. [3]
    Zienkiewicz, O. C., The Finite Element Method, 3rd ed., McGraw-Hill, New York, 1977.MATHGoogle Scholar
  4. [4]
    Rao, S. S., The Finite Element Method in Engineering, Pergamon Press, 1982.Google Scholar
  5. [5]
    Schmit, L. A., Structural Design by Systematic Synthesis, Proceedings of 2nd Conference on Electronic Computations, ASCE, New York, 1960, pp. 105–122.Google Scholar
  6. [6]
    Kicher, T. P., Structural Synthesis of Integrally Stiffened Cylinders, J. of Spacecraft and Rockets, Vol. 5, 1968, pp. 62–67.CrossRefGoogle Scholar
  7. [7]
    Gellatly, R. A., Gallagher, R. H., A Procedure for Automated Minimum Weight Structural Design, Aero. Quart., 17, 1966, Part 1, pp. 216-230, Part 2, pp. 332-342.Google Scholar
  8. [8]
    Schmit, L. A., Structural Synthesis 1959–1969, A Decade of Progress, Proc. Japan-US Seminar on Matrix Methods of Structural Analysis and Design, University of Alabama Press, 1971.Google Scholar
  9. [9]
    Zienkiewicz, O. C., Campbell, J. S., Shape Optimization and Sequential Linear Programming, Optimum Structural Design (Ed. Gallagher, R. H, Zienkiewicz, O. C.), Wiley, 1973, pp 109-126.Google Scholar
  10. [10]
    Queau, J. P., Trompette, Ph., Two Dimensional Shape Optimal Design by the Finite Element Method, Int. J. Numer. Meth. Engng., 15, 1980, pp. 1603–1612.CrossRefMATHGoogle Scholar
  11. [11]
    Kristensen, E. S., Madsen, N. F., On the Optimum Shape of Fillet in Plates Subjected to Multiple In-plane Loading Cases, Int. J. Numer. Meth. Engng., Vol. 10, 1976, pp. 1007–1019.CrossRefMATHGoogle Scholar
  12. [12]
    Spillers, W. R., Singh, S., Shape Optimization: Finite Element Examples, J. Struct. Div. ASCE., 107, 1981, pp. 2015–2025.Google Scholar
  13. [13]
    Pedersen, P., Laursen, C. L., Design for Optimum Stress Concentration by Finite Element Method and Linear Programming, J. Struct. Mech., 10, 1982, pp. 375–391CrossRefGoogle Scholar
  14. [14]
    Botkin, M. E., Shape Optimization of Plate and Shell Structures, AIAA, Vol. 20, No. 2, 1981.Google Scholar
  15. [15]
    Botkin, M. E., Yang, R. J., Bennett, J. A., Shape Optimization of Three-Dimensional Stamped and Solid Automotive Components, The Optimum Shape, Int. Symposium, General Motors Research Labs., Warren, Michigan, 1985.Google Scholar
  16. [16]
    Epsing, B. J. D., A CAD Approach to Minimum Weight Design Problem, Int. J. Numer. Meth. Engng., 21, 1985, pp. 1049–1066CrossRefGoogle Scholar
  17. [17]
    Grandhi, R. V., Bowman, K. B., Structural Optimization for Static Aeroelastic Performance, Computer Aided Optimum Design (ed. C. A. Brebbia and S. Hernandez), CMP and Springer-Verlag, 1989.Google Scholar
  18. [18]
    Schnack, E., An Optimization Procedure for Stress Concentration by the F.E. Technique, Int. J. Numer. Mech. Engng., Vol. 14, 1979, pp. 115–124.CrossRefMATHGoogle Scholar
  19. [19]
    Tvergaafd, V., On the Optimum Shape of a Fillet irr a Flat Bar with Restrictions, Optimization in Structural Design (ed. A. Sawczuk and Z. Mroz), Springer-Verlag, New York, 1975, pp. 181–195.Google Scholar
  20. [20]
    Oda, J., On a Technique to Obtain an Optimum Strength Shape by the Finite Element Method, Bulletin of JSME, vol. 20, 1977, pp. 160–167.CrossRefGoogle Scholar
  21. [21]
    Oda, J., Yamazaki, K., Pattern Transformation Method for Shape Optimization in its Application to Spoked Rotary Disks, Int. Symposium on Optimum Structural Design, Tucson, Arizona, 1981, pp. 4.29-4.35.Google Scholar
  22. [22]
    Ramakrishnan, C. V., Francavilla, A., Structural Shape Optimization Using Penalty Function, J. Struc. Mech., vol. 3(4), 1975, pp. 403–432.CrossRefGoogle Scholar
  23. [23]
    Chun, Y. W., Haug, E. J., Two Dimensional Shape Optimal Design, Int. J. Numer. Meth. Engng., vol. 13(5), 1978, pp. 311–336.CrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    Rousselet, B., Haug, E. J., Design Sensitivity Analysis of Shape Variations, Optimization of Distributed Parameter Structures (Eds. Haug, E. J., Cea, J.), Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherland, 1981, pp. 1397–1442.Google Scholar
  25. [25]
    Haug, E. J., Arora, J. S., Applied optimal design, John Wiley and Sons, 1979.Google Scholar
  26. [26]
    Prager, W., Shield, R. T., A General Theory of Optimal Plastic Design, J. Appl. Mech., Vol. 34, 1967, pp. 184–186.CrossRefMATHGoogle Scholar
  27. [27]
    Berke, L., An Efficient Approach to the Minimum Weight Design of Deflection Limited Structures, Rep. of Air Force Flight Dynamics Lab. AFFDL-TM-70-4, 1970.Google Scholar
  28. [28]
    Fleury, C., Structural Weight Optimization by Dual Method of Convex Programming, Int. J. Numer. Mech. in Engng., vol. 14, No. 12, 1979, pp. 1761–1783.CrossRefMATHGoogle Scholar
  29. [29]
    Fleury, C., Braibant, V., Structural Optimization. A New Dual Method Using Mixed Variables, Int. J. Numer. Meth. Engng., 23, 1986, pp. 409–428.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    Dems, K., Mroz, Z., Multiparameter Structural Shape Optimization by Finite Element Method, Int. J. Numer. Meth. in Engng., vol. 13, 1978, pp. 247–263.CrossRefMATHGoogle Scholar
  31. [31]
    Mroz, Z., Dems, K., On Optimal Shape Design of Elastic Structures, Optimization Method in Structural Design (eds. H. Eschenauer and N. Olhoff), 1983, pp. 224-243.Google Scholar
  32. [32]
    Dems, K., Mroz, Z., Variational Approach by Means of Adjoint System to Structural Optimization and Sensitivity Analysis, Int. J. Solids Structures, 19, pp. 677–692, 1983. 20, pp. 527-552, 1984.CrossRefMATHMathSciNetGoogle Scholar
  33. [33]
    Kikuchi, N., Taylor, J. E., Optimal Modification of Shape for Two-Dimensional Elastic Bodies, J. Struct. Mech., Vol. 11(1), 1983, pp. 111–135.CrossRefMathSciNetGoogle Scholar
  34. [34]
    Olhoff, N., Structural Optimization By Variational Methods, Computer Aided Optimal Design: Structural and Mechanical Systems (ed C. A. Mota Soares), Springer-Verlag, 1987, pp. 87-164.Google Scholar
  35. [35]
    Kunar, R. R., Chan, A. S. L., A Method for the Configurational Optimization of Structures, Comput. Meth. App. Mech. Engng., Vol. 1, 7. 1976, pp. 331–350.CrossRefGoogle Scholar
  36. [36]
    Kodiyalam, S., Vanderplaats, G. N., Shape Optimization of Three-Dimensional Continuum Structures via Forced Approximation Technique, Int. J. Numer. Meth. Engng., 27, (9), 1989. pp. 1256–1263.Google Scholar
  37. [37]
    Imam, M. H., Three-Dimensional Shape Optimization, Int. J. Numer. Meth. Engng., 18, 1982, pp. 661–673.CrossRefMATHGoogle Scholar
  38. [38]
    Wassermann, K., Three-Dimensional Shape Optimization of Arch Dam with Prescribed Shape Functions, J. Struct. Mech., 11, 1983, pp. 465–489.CrossRefGoogle Scholar
  39. [39]
    Yang, R. J., Botkin, M. E., A Modular Approach for Three-Dimensional Shape Optimization of Structures, Research Pub. GMR-5216, General Motors Research Labs., 1986.Google Scholar
  40. [40]
    Yao, T., Choi, K. K., Three-Dimensional Optimal Design and Automatic Finite Element Regrading, Int. J. Numer. Meth. Engng., Vol. 28, 1989, pp. 369–384.CrossRefMATHGoogle Scholar
  41. [41]
    Brebbia, C. A., Telles, J. C. F., Wrobel, L. C., Boundary Element Technique. Theory and Application in Engineering, Springer-Verlag, Berlin, 1984.CrossRefGoogle Scholar
  42. [42]
    Hartmann, F., Introduction to Boundary Elements. Theory and Application, Springer-Verlag, 1989.Google Scholar
  43. [43]
    Zhao, Z. Y., Adey, R. A., Shape Optimization — A Numerical Consideration, Proc. 11th BEM Conf., Cambridge, USA, 1989, pp. 195-208.Google Scholar
  44. [44]
    Yang, R. J., Choi, K. K., Haug, E. J., Numerical Considerations in Structural Component Shape Optimization, ASME, 107, 1985.Google Scholar
  45. [45]
    Futagami, T., Boundary Element and Linear Programming Method in Optimization of Partial Differential Systems, Proc. 3rd International Seminar on BEM (ed. C. A. Brebbia), Springer-Verlag, 1981, pp. 457-471.Google Scholar
  46. [46]
    Futagami, T., Boundary Element and Dynamic Programming Method in Optimization of Transient Differential Systems, Proc. 4th International Seminar, Springer-Verlag, 1982, pp. 58-71.Google Scholar
  47. [47]
    Futagami, T., Boundary Element Method — Finite Element Method Coupled With Linear Programming for Optimal Control of Distributed Parameter Systems, Boundary Elements (ed. C. A. Brebbia), Springer-Verlag, 1983, pp. 891-900.Google Scholar
  48. [48]
    Barone, M. R., Caulk, D. A., Optimal Arrangement of Holes in a two-Dimensional Heat Conductor by a Special Boundary Integral Method, Int. J. Numer. Mech. Engng., 18, 1982, pp.675–685.CrossRefMATHGoogle Scholar
  49. [49]
    Meric, R. A., Boundary Integral Equation and Conjugate Methods for Optimal Boundary Heating of Solids, Int. heat and mass transfer, 26, 1983, pp.261–264.CrossRefGoogle Scholar
  50. [50]
    Meric, R. A., Boundary Element Methods for Static Optimal Heating of Solids, ASME, J. of Heat Transfer, 106, 1984, pp. 876–880.CrossRefGoogle Scholar
  51. [51]
    Meric, R. A., Boundary Element methods for Optimization of Distributed Parameter Systems, Int. J. Numer. Mech. Engng., 20, 1984, pp. 1291–1306.CrossRefMATHGoogle Scholar
  52. [52]
    Mota Soares, C. A., Rodrigues, H. C., Oliveira, L. M., Haug, E. J., Optimization of the Shape of Solids and Hollow Shifts Using Boundary Element Methods, Boundary Elements (ed. C. A. Brebbia), Springer-Verlag, 1983, pp. 883-889.Google Scholar
  53. [53]
    Mota Soares, C. A., Choi, K. K., Boundary Elements in Shape Optimal Design of Structures, The Optimum Shape: Automated Structural Design (eds. J. A. Bennett, M. E. botkin), Plenum Press, 1986, pp. 199-236.Google Scholar
  54. [54]
    Zochowski, A., Mizukami, J. S., A Comparison of BEM and FEM in Minimum Weight Design, 5th BEM Conference (ed C. A. Brebbia), Springer-Verlag, 1983, pp. 901-911.Google Scholar
  55. [55]
    Zhao, Z. Y., Adey, R. A., Shape Optimization Using the Boundary Element Method, Computer Aided Design of Structures: Recent Advances (ed. C. A. Brebbia and S. Hernandez), CMP and Springer-Verlag, 1989, pp. 145-163.Google Scholar
  56. [56]
    Kane, J. H., Shape Optimization Utilizing a Boundary Formulation, Proc. 2nd Boundary Element Technology Conference (eds. J. J. Connor, C. A. Brebbia), 1986.Google Scholar
  57. [57]
    Defourny, M., Boundary Element Method and Design Optimization, Proc. 9th Conference on Boundary Elements, Stuttgart, Springer-Verlag, 1987.Google Scholar
  58. [58]
    Defourny, M., Optimization Techniques and Boundary Element Method, Proc. 10th Conference on Boundary Elements, Southampton, Springer-Verlag, 1988.Google Scholar
  59. [59]
    Burczynski, T., Adamczyk, T., The Boundary Element Method for Shape Design Synthesis of Elastic Structures, Proc. 7th Conference on Boundary Element Methods (ed. C. A. Brebbia), Springer-Verlag, 1985.Google Scholar
  60. [60]
    Burczynski, T., Adamczyck, T., The Boundary Element Formulation for Multiparameter Structure Shape Optimization, Appl. Math. Modelling, 9, 1985, pp. 195–200.CrossRefMATHMathSciNetGoogle Scholar
  61. [61]
    Gracia, L., Doblare, M., Shape Optimization By Using BEM, 10th BEM Conferences, CMP and Springer-Verlag, 1988, 491-514.Google Scholar
  62. [62]
    Eizadian, D., Trompette, M., Shape Optimization of Bidimensional Structures by Boundary Element Method, Conference on CAD/CAM, Robotics and Automation in Design, Tucson, Arizona, 1985.Google Scholar
  63. [63]
    Kamiya, N., Kita, E., Shape Optimization by Coupling Finite and Boundary Element Method, Proc. Boundary Elements IX (eds. C. A. Brebbia, W. L. Wendland, G. Kuhn), vol. 2, Springer-Verlag, 1987, pp. 473-484.Google Scholar
  64. [64]
    Kamiya, N., Kita, E., Structural Optimization by an Adaptive Boundary Element Method, Boundary Element Element in Applied Mechanics (ed M. Tanaka and T. A. Cruse), Pergamon Press, 1988, pp. 393-402.Google Scholar
  65. [65]
    Kamiya, N., Nagai, T., Abe, J., Design Boundary Elements, Boundary Element Techniques (eds. C. A. Brebbia, W. S. Venturini), Comp. Mech. Pub., 1987, pp. 221-233.Google Scholar
  66. [66]
    Sandgren, E., Wu, S., Shape Optimization Using the Boundary Element with Substructing, Int. J. Numer. Mech. Engng., vol. 26, 1988, pp. 1913–1924.CrossRefMATHGoogle Scholar
  67. [67]
    Chaudouet-Miranda, A., Yafi, F., Boundary Element Method Applied to 3D Optimum Design, IUTAM, Advanced Boundary Element Methods, Springer-Verlag, 1987, pp. 101-108.Google Scholar
  68. [68]
    Hou, J. W., Sheen, J. S., Computational Shape Optimization: Recent Advances and Applications, Computer Aided Optimum Design of Structures (ed C. A. Brebbia and S. Hernandez), CPM and Springer-Verlag, 1989, pp. 125-134.Google Scholar
  69. [69]
    Gill, P. E., Murray, W., Saunders, M. A., Wright, M. H., Computing Forward-Difference Intervals for Numerical Optimization, SIAM J. Sci. and Stat. Comput., Vol. 4, No. 2, 1983, pp. 310–321.CrossRefMATHMathSciNetGoogle Scholar
  70. [70]
    Iott, J., Haftka, R. T., Adelman, H. M., Selecting Step Sizes in Sensitivity Analysis by Finite Differences, NASA TM 86382, 1985.Google Scholar
  71. [71]
    Barthelemy, B. M., Haftka, R. T., Accuracy Analysis of the Semianalytical Method for Shape Sensitivity Calculation, Proc. AIAA/ASME/ASCE/AHS 29th Structures, Structural Dynamics and Material Conf., USA, 1988.Google Scholar
  72. [72]
    Botkin, M. E., Shape Optimization of Plate and Shell Structures, AIAA, Vol. 20, No. 2, 1982, pp. 268–273.CrossRefGoogle Scholar
  73. [73]
    Braibant, V., Fleury, C., Shape Optimal Design — A Performing C.A.D. Oriented Formulation, Proc. AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics and Materials, Palm Springs, CA., 1984.Google Scholar
  74. [74]
    Fleury, C., Computer-Aided Optimal Design of Elastic Structures, Computer-Aided Optimal Design: Structural and Mechanical Systems (ed C.A. Mota Soares), Springer-Verlag, 1987, pp. 831-900.Google Scholar
  75. [75]
    Cea, J., Numerical Methods of Shape Optimal Design, Optimization of Distributed Parameter Structures (eds. E. J. Haug, J. Cea), Sijthoff Noordhoff, Alphen aan den Rijn, Netherland, 1981.Google Scholar
  76. [76]
    Zolesio, J-p., The Material Derivative Method for Shape Optimization, Optimization of Distributed Parameter Structures, Sijthoff Noordhoff, 1981, pp. 1089-1151.Google Scholar
  77. [77]
    Rousselet, B., Implementation of Some Methods of Shape Optimal Design, Optimization of Distributed Parameter Structures, Sijthoff Noordhoff, 1981.Google Scholar
  78. [78]
    Choi, K. K., Haug, E. J., Shape Design Sensitivity Analysis of Elastic structures, J. Struct. Mech., 11(2), 1983, pp. 231–269.CrossRefMathSciNetGoogle Scholar
  79. [79]
    Haug, E. J., Choi, K. K., Komkov, V., Design Sensitivity Analysis of Structural Systems, Academic Press, New York, 1985.Google Scholar
  80. [80]
    Haber, B. R., A New Variational Approach to Structural Shape Design Sensitivity Analysis, Computer Aided Optimal Design: Structural and Mechanical Systems, Springer-Verlag, 1987, pp. 573-588.Google Scholar
  81. [81]
    Dems, K., Sensitivity Analysis in Thermoelasticity Problems, Computer Aided Optimal Design: Structural and Mechanical Systems, Springer-Verlag, 1987, pp.563-572.Google Scholar
  82. [82]
    Haug, E. J., Design Sensitivity Analysis of Dynamic Systems, Computer Aided Optimal Design: Structural and Mechanical Systems, Springer-Verlag, 1987, pp. 705-755.Google Scholar
  83. [83]
    Arora, J. S., Wu, C. C., Design Sensitivity Analysis and Optimization of Nonlinear Structures, Computer Aided Optimal Design: Structural and Mechanical Systems, Springer-Verlag, 1987, pp. 589-604.Google Scholar
  84. [84]
    Haug, E. J., Choi, K. K., Material Derivative Methods for Shape Design Sensitivity Analysis, The Optimum Shape: Automated Structural Design (ed: J. A. Bennett and M. E. Botkin), Plenum Press, 1986.Google Scholar
  85. [85]
    Nguyen, V. U., Arenicz, R., Sensitivity Analysis of Underground Excavation Using Boundary Element Methods, Proc. BETECH 85 (eds. C. A. Brabbia, B. J. Noye), Springer-Verlag, 1985.Google Scholar
  86. [86]
    Wu, S. J., Application of the Boundary Element Method for Structural Shape Optimization, PhD Thesis, The University of Missouri, Columbia, 1986.Google Scholar
  87. [87]
    Zhao, Z. Y., Adey, R. A., A Finite Difference Based Approach to Shape Design Sensitivity Analysis, This paper will appear on Proc. of BEM12, Japan, Sept., 1990.Google Scholar
  88. [88]
    Kane, J. H., Optimization of Continuum Structures Using a Boundary Element Formulation, PhD Thesis, The University of Connecticut, 1986.Google Scholar
  89. [89]
    Saigal, S., Aithal, R., Kane, J. H., Semianalytical Sensitivity Formulation in Boundary Elements, AIAA Journal, Vol. 27, No. 11, 1989, pp. 1615–1621.CrossRefGoogle Scholar
  90. [90]
    Barone, M. R., Yang, R.-J., Boundary Integral Equations For Recovery of Design Sensitivity in Shape Optimization, AIAA Journal, Vol. 26, No. 5, 1988, pp. 589–594.CrossRefMathSciNetGoogle Scholar
  91. [91]
    Zhang, Q., Mukherjee, S., Design Sensitivity Coefficients for Linear Elasticity Problems by Boundary Element Methods, IUTAM/IACM Symposium on Discretization Methods in Structural Mechanics, Austria, 1989.Google Scholar
  92. [92]
    Ghosh, N., Rajiyah, H., Ghosh, S., Mukherjee, S., A New Boundary Element Method Formulation for Linear Elasticity, ASME of Appli. Mech., 53, 1986.Google Scholar
  93. [93]
    Mota Soares, C. A., Choi, K. K., Boundary Elements in Shape Optimal Design of Structures, The Optimum Shape: Automated Structural Design (ed J. A. Bennett and M. E. Botkin), Plenum, New York, 1986, pp. 199–231.Google Scholar
  94. [94]
    Choi, J. H., Kwak, B. M., Boundary Integral Equation Method for Shape Optimization of Elastic Structures, Int. J. Numer. Mech. Engng., vol. 26, 1988, pp. 1579–1595.CrossRefMATHMathSciNetGoogle Scholar
  95. [95]
    Kwak, B. M., Choi, J. H., Shape Design Sensitivity Analysis Using Boundary Integral Equation for Potential Problems, Computer Aided Optimal Design: Structural and Mechanical Systems (ed. C. A. Mota Soares), Springer-Verlag, 1987.Google Scholar
  96. [96]
    Zhao, Z. Y., Adey, R. A., The Accuracy of the Variational Approach to Shape Design Sensitivity Analysis, Proc. EuroBEM Conf., Nice, 1990.Google Scholar
  97. [97]
    Meric, R. A., Boundary Elements in Shape Design Sensitivity Analysis of Thermoelastic Solids, Computer Aided Optimal Design: Structural and Mechanical Systems (ed. C. A. Mota Soares), Springer-Verlag, 1987, pp. 643-652.Google Scholar
  98. [98]
    Gallagher, R. H., Zienkiewicz, O. C. (eds), Optimum Structural Design: Theory and Application, John Wiley & Sons, 1973.Google Scholar
  99. [99]
    Haug, E. J., Cea, J. (eds), Optimization of Distributed Parameter Structures, Sijthoff and Noordhoff, The Netherlands, 1981.MATHGoogle Scholar
  100. [100]
    Atrek, E., Gallagher, R. H., Ragsdell, K. M., Zienkiewicz, O. C. (eds), New Directions in Optimum Structural Design, John Wiley & Sons, 1984.Google Scholar
  101. [101]
    Bennett, J. A., Botkin, M. E. (eds), The Optimum Shape: Automated Structural Design, Plenum Press, 1986.Google Scholar
  102. [102]
    Mota Soares, C. A. (ed), Computer Aided Optimal Design: Structural and Mechanical Systems, Springer-Verlag, 1986.Google Scholar
  103. [103]
    Eschenauer, H. A., Thierauf, G. (eds), Discretization Methods and Structural Optimization — Procedures and Applications, Springer-verlag, 1988.Google Scholar
  104. [104]
    Brebbia, C. A., Hernandez, S (eds), Computer Aided Optimum Design of Structures, CMP and Springer-Verlag, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • Zhiye Zhao
    • 1
  1. 1.School of Civil and Structural EngineeringNanyang Technological UniversitySingapore

Personalised recommendations