Skip to main content

Studies of Multiply Charged Molecules by Ion Collision Techniques and Ab Initio Theoretical Methods

  • Chapter
  • 115 Accesses

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 54))

Abstract

Experimental developments over the last two to three decades have made feasible detailed studies on the structure and spectroscopy of singly charged molecular ions, and a substantial body of information now exists on positively charged diatomic and polyatomic molecules covering the spectral region from the microwave to the infrared (see [8.1], and references therein). However, despite the fact that multiply charged molecular ions were first observed in a mass spectrometer as long ago as 1932 [8.2], there continues to be an acute paucity of experimental and theoretical information on such species. Even in the case of relatively simple species, such as doubly charged diatomic ions (like CO2+) and highly symmetrical polyatomic ions (like \( \mathop {\text{CH}}\nolimits_4^{2 + } \)), the information that does exist can, in the main, be considered to be somewhat ambiguous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Carrington, B. A. Thrush: Phil. Trans. R. Soc. London A324, 73 (1988)

    Google Scholar 

  2. E. Friedlanden H. Kallman, W. Lasereff, B. Rosen: Z. Phys. 76, 60 (1932)

    Article  ADS  Google Scholar 

  3. D. Mathur, C. Badrinathan: J. Phys. B 20, 1517 (1987)

    Article  ADS  Google Scholar 

  4. T. G. Heil, S. E. Butler, A. Dalgamo: Phys. Rev. A 27, 2365 (1983)

    Article  ADS  Google Scholar 

  5. D. L. Cooper, M. J. Ford, J. Gerratt, M. Raimondi: Phys. Rev. A 34, 1752 (1986)

    Article  ADS  Google Scholar 

  6. S. S. Prasad, D. R. Furman: J. Geophys. Res. 80, 1360 (1975)

    Article  ADS  Google Scholar 

  7. D. Mathur, C. Badrinathan, F. A. Rajgara, U. T. Raheja: Chem. Phys. 103, 447 (1986)

    Article  Google Scholar 

  8. S. Mazumdar, F. A. Rajgara, V. R. Marathe, C. Badrinathan, D. Mathur: J. Phys. B 21, 2815 (1988)

    Article  ADS  Google Scholar 

  9. D. Mathur, C. Badrinathan: J. de Physique C1 50, 137 (1989)

    Google Scholar 

  10. R. G. Cooks, T. Ast, J. H. Beynon: Int. J. Mass Spectrom. Ion Processes 11, 490 (1973)

    Article  Google Scholar 

  11. J. Appell: “Double Electron Transfer and Related Reactions”, in Collision Spectroscopy, ed. by R.G. Cooks (Plenum, New York 1978) Chap. 4

    Google Scholar 

  12. M. Barber, D. J. Bell, M. Morris, L. W. Tetler, M. D. Woods, J. J. Monaghan, W. E. Morden: Org. Mass Spectrom. 24, 504 (1989)

    Article  Google Scholar 

  13. B. E. Jones, L. E. Abbey, H. L. Chatham, A. W. Hanner, L. A. Teleshefsky, E. M. Burgess, T. F. Moran: Org. Mass Spectrom. 18, 282 (1982)

    Google Scholar 

  14. A. Galindo-Uribarri, H. W. Lee, H. Chang: J. Chem. Phys. 83, 3685 (1985)

    Article  ADS  Google Scholar 

  15. A. Balkacem, E. P. Kanter, R. E. Mitchell, Z. Vager, B. J. Zabransky: Phys. Rev. Lett 63, 2555 (1989)

    Article  ADS  Google Scholar 

  16. D. Mathur; E. Krishnakumar, F. A. Rajgara, U. T. Raheja, C. Badrinathan: Int J. Mass Spectrom. Ion Processes 99, 237 (1990)

    Article  Google Scholar 

  17. H. Tawara, T. Tonuma, K. Baba, M. Kase, T. Kambara, H. Kumagai, I. Kohno: Nucl. Instrum. Methods B23, 203 (1987)

    ADS  Google Scholar 

  18. H. Tawara, T. Tonuma, H. Shabita, M. Kase, T. Kambara, S. H. Be, H. Kumagai, I. Kohno: Phys. Rev. A 33, 1385 (1986)

    Article  ADS  Google Scholar 

  19. A. K. Edwards, R. M. Wood, M. F. Steur, Phys. Rev. A. 15, 48 (1977)

    Article  ADS  Google Scholar 

  20. A. K. Edwards, R. M. Wood: J. Chem. Phys. 76, 2938 (1982)

    Article  ADS  Google Scholar 

  21. R. L. Ezell, A. K. Edwards, R. M. Wood: J. Chem. Phys. 81, 1341 (1984)

    Article  ADS  Google Scholar 

  22. M. L. Langford, D. Mathur, F. M. Harris: Rapid Comm. Mass Spectrom. 2, 167 (1988)

    Article  Google Scholar 

  23. R. Spohr, T. Bergmark, N. Magnusson, L. O. Werme, C. Nordling, K. Siegbahn: Phys. Scr. 67, 31(1970)

    Article  ADS  Google Scholar 

  24. T. A. Carlson: Photoelectron and Auger Spectroscopy (Plenum, New York 1975)

    Google Scholar 

  25. P. Lablanquie, I. Nenner, P. Millie, P. Morin, J. H. D. Eland, M. Hubin-Franskin, J. Delwiche: J. Chem. Phys. 82, 2951 (1985)

    Article  ADS  Google Scholar 

  26. G. Dujardin, S. Leach, O. Dutuit, P.-M. Guyon, M. Richard-Viard: Chem. Phys. 88, 339 (1984)

    Article  Google Scholar 

  27. P. J. Richardson, J. H. D. Eland, P. G. Fournier, D. L. Cooper: J. Chem. Phys. 84, 3189 (1986)

    Article  ADS  Google Scholar 

  28. J. H. D. Eland, F. S. Wort, R. N. Royds: J. Electron Spectrosc. Relat. Phenom. 41, 297 (1986)

    Article  Google Scholar 

  29. P. K. Carroll: Can. J. Phys. 36, 1585 (1958)

    Article  ADS  Google Scholar 

  30. P. C. Cosby, R. Moller, H. Helm: Phys. Rev. A 28, 766 (1983)

    Article  ADS  Google Scholar 

  31. D. Cossard, F. Launay, J. M. Robbe, G. Gandara: J. Molec. Spectrosc. 113, 142 (1985)

    Article  ADS  Google Scholar 

  32. M. J. Besnard, L. Hellnei; Y. Malinovich, G. Dujardin: J. Chem. Phys. 85, 1316 (1986)

    Article  ADS  Google Scholar 

  33. K. Tohji, D. M. Hanson, B. X. Yang: J. Chem. Phys. 85, 7492 (1986)

    Article  ADS  Google Scholar 

  34. F. L. Mohler: “Survey of Multiply Charged Ions”; NBS Technical Note 243, National Bureau of Standards, Washington (1964)

    Google Scholar 

  35. W. Koch, N. Heinrich, H. Schwarz, F. Maquin, D. Stahl: Int. J. Mass Spectrom. Ion Proc. 67, 305(1985)

    Article  Google Scholar 

  36. J. H. D. Eland, F. S. Wort, P. Lablanquie, I. Nenner. Z. Phys. D 4, 31 (1986)

    Article  ADS  Google Scholar 

  37. B. Brehm, G. de Frenes: Int J. Mass Spectrom. Ion Phys. 26, 251 (1978)

    Article  Google Scholar 

  38. F. Sasaki, K. Ohno: J. Math. Phys. 4, 1140 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. P. O. Löwdin: Rev. Mod. Phys. 32, 328 (1960)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. P. O. Löwdin: Rev. Mod. Phys. 36, 966 (1964)

    Article  ADS  Google Scholar 

  41. W. A. Goddard II: Phys. Rev. 182, 48 (1969)

    Article  ADS  Google Scholar 

  42. S. F. Boys: Proc. R. Soc. London A200, 542 (1950)

    ADS  Google Scholar 

  43. S. Rothenberg, H. F. Schaefer III: J. Chem. Phys. 54, 2765 (1971)

    Article  ADS  Google Scholar 

  44. J. Vladimiroff: J. Phys. Chem. 77, 1983 (1973)

    Article  Google Scholar 

  45. J. W. Viers, F. E. Harris, H. F. Schaefer III: Phys. Rev. A 1, 24 (1970)

    Article  ADS  Google Scholar 

  46. M. H. Johnson: Phys. Rev. 39, 197 (1932)

    Article  MATH  ADS  Google Scholar 

  47. R. K. Nesbet: J. Chem. Phys. 43, 311 (1965)

    Article  ADS  Google Scholar 

  48. I. Shavitt: J. Comput. Phys. 6, 124 (1970)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. S. R. Langhoff, E. R. Davidson: Int. J. Quantum Chem. 8, 61 (1974)

    Article  Google Scholar 

  50. J. A. Pople, R. Seeger, R. Krishnan: Int. J. Quantum Chem. 11, 149 (1977)

    Article  Google Scholar 

  51. J. Cizek: J. Chem. Phys. 45, 4256 (1966)

    Article  ADS  Google Scholar 

  52. J. Paldus, J. Cizek, I. Shavitt: Phys. Rev. A 5, 50 (1972)

    Article  ADS  Google Scholar 

  53. K. Raghavachari: J. Chem. Phys. 82, 4607 (1985)

    Article  ADS  Google Scholar 

  54. J. A. Pople, M. Head-Gordon, K. Raghavachari: J. Chem. Phys. 87, 5968 (1987)

    Article  ADS  Google Scholar 

  55. C. Möller, M. S. Plesset: Phys. Rev. 46, 618 (1934)

    Article  ADS  Google Scholar 

  56. A. C. Wahl, G. Das: “The multiconfiguration self-consistent field method” in Methods of Electronic Structure Theory, ed. by H. F. Schaeffer III (Plenum, New York 1977) pp. 51–78

    Google Scholar 

  57. P. O. Löwdin: Phys. Rev 97, 1474 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  58. C. F. Bender, E. R. Davidson: J. Phys. Chem. 70, 2675 (1966)

    Article  Google Scholar 

  59. K. Ruedenbeig, M. V. Schmidt, M. M. Gilbert, S. T. Elbert: Chem. Phys. 71, 41 (1982)

    Article  Google Scholar 

  60. K. Ruedenbeig, M. V. Schmidt, M. M. Gilbert: Chem. Phys. 71, 51 (1982)

    Article  Google Scholar 

  61. I. Shavitt: Int J. Quantum Chem. 11, 133 (1977)

    Google Scholar 

  62. I. Shavitt Int. J. Quantum Chem. 12, 5 (1978)

    Google Scholar 

  63. B. O. Roos, P. R. Taylor, P. E. M. Siegbahn: Chem. Phys. 48, 157 (1980)

    Article  MathSciNet  Google Scholar 

  64. P. E. M. Siegbahn, J. Almlöf, A. Heibeig, B. O. Roos: J. Chem. Phys. 74, 2384 (1981)

    Article  ADS  Google Scholar 

  65. B. O. Roos: Int J. Quantum Chem. 14, 175 (1980)

    Google Scholar 

  66. C. A. Coulson, I. Fischen Phil. Mag. 40, 386 (1949)

    MATH  Google Scholar 

  67. M. Kotani, A. Amemiya, E. Ishigura, T. Kimura: Tables of Molecular Integrals, 2nd ed. (Marazen, Tokyo 1963)

    Google Scholar 

  68. J. Gerratt, M. Raimondi: Proc. Roy. Soc. Lond. A371, 525 (1980)

    ADS  Google Scholar 

  69. J. Gerratt, D. L. Cooper, M. Raimondi: “The spin-coupled valence bond theory of molecular electronic structure”, in Studies in Physical and Theoretical Chemistry, Vol. 64, ed. by D. J. Klein, N. Trinajstic (Elsevier, Amsterdam 1990) pp. 287–349

    Google Scholar 

  70. M. Guilhaus, A. G. Brenton, J. H. Beynon, M. Rabrenovic, P. von Rague Schleyer; J. Phys. B 17, L605 (1984)

    Article  ADS  Google Scholar 

  71. D. Mathur; V. Krishnamurthy: (to be published)

    Google Scholar 

  72. R. Poirier, R. Kari, I. G. Csizmadia, Handbook of Gaussian Basis Sets (Elsevier, Amsterdam, 1985)

    Google Scholar 

  73. A. C. Hurley, J. Chem. Phys. 54, 3656 (1971)

    Article  ADS  Google Scholar 

  74. G. H. Bearman, E Ranjbai; H. H. Harris, J. J. Leventhal: Chem. Phys. Lett. 42, 335 (1976)

    Article  ADS  Google Scholar 

  75. M. Larsson, B. J. Olsson, P. Sigray: Chem. Phys. 139, 457 (1989)

    Article  Google Scholar 

  76. V. R. Marathe, D. Mathun Chem. Phys. Lett 163, 189 (1989)

    Article  ADS  Google Scholar 

  77. N. Correia, A. Flores-Riveros, H. Agren, K. Helenelund, L. Asplund, U. Gelius: J. Chem. Phys. 83, 2035 (1985)

    Article  ADS  Google Scholar 

  78. G. E. Laramore: Phys. Rev. A 29, 23 (1984)

    Article  ADS  Google Scholar 

  79. C.-M. Liegenen Chem. Phys. Lett 106, 201 (1984)

    Article  ADS  Google Scholar 

  80. D. Mathur, V. R. Marathe, S. Mazumdar: J. Phys. B 22, L385 (1989)

    Article  ADS  Google Scholar 

  81. D. Mathur, F. A. Rajgara: Phys. Rev. A 41, 4824 (1990)

    Article  ADS  Google Scholar 

  82. D. Mathur, R. G. Kingston, F. M. Harris, J. H. Beynon: J. Phys. B 19, L575 (1986)

    Article  ADS  Google Scholar 

  83. D. Mathur, F. M. Harris: Mass Spectrom. Reviews 8, 269 (1989)

    Article  Google Scholar 

  84. W. J. Griffiths, D. Mathur, F. M. Harris: J. Phys. B 20, L493 (1987)

    Article  ADS  Google Scholar 

  85. R. Rye, T. E. Madey, J. E. Houston, P. H. Holloway: J. Chem. Phys. 69, 1504 (1978)

    Article  ADS  Google Scholar 

  86. P. G. Fournier, J. Fournier, F. Salama, P. J. Richardson, J. H. D. Eland: J. Chem. Phys. 83, 241 (1985)

    Article  ADS  Google Scholar 

  87. G. Dujardin, D. Winkoun, S. Leach: Phys. Rev. A3, 3027 (1985)

    ADS  Google Scholar 

  88. P. A. Hatherly, M. Stankiewicz, L. J. Franski, K. Codling, M. A. McDonald: Chem. Phys. Lett 159, 355(1989)

    Article  ADS  Google Scholar 

  89. J. Appell, J. A. Horsley: J. Chem. Phys. 60, 3445 (1974)

    Article  ADS  Google Scholar 

  90. W. J. Meyen Chem. Phys. 58, 1017 (1973)

    ADS  Google Scholar 

  91. P. E. M. Siegbahn: Chem. Phys. 66, 443 (1982)

    Article  ADS  Google Scholar 

  92. M. Rabrenović, C.J. Proctor, T. Ast, C.G. Herbert, A.G. Brenton, J.H. Beynon: J. Phys. Chem. 87, 3305 (1983)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marathe, V.R., Mathur, D. (1991). Studies of Multiply Charged Molecules by Ion Collision Techniques and Ab Initio Theoretical Methods. In: Mathur, D. (eds) Physics of Ion Impact Phenomena. Springer Series in Chemical Physics, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84350-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84350-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84352-5

  • Online ISBN: 978-3-642-84350-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics