Micromechanical Modelling and Computation of Shakedown with Nonlinear Kinematic Hardening — Including Examples for 2D-Problems

  • Erwin Stein
  • Genbao Zhang
  • Jan A. König
Conference paper


A static shakedown theorem is presented using a micromechanical overlay model which simulates elastic-plastic material behaviour with nonlinear kinematic hardening. It is a generalization of the Melan theorem for unlimited, linear kinematic hardening material. The new model is an extension of the one-dimensional Masing overlay model. It is shown that the necessary shakedown conditions for general nonlinear kinematic hardening materials are also sufficient ones for the proposed material model. Numerical solutions of 2-D problems were developed using finite element discretization and advanced optimization techniques. Three examples for plates and shells show the influence of the type of strainhardening on the magnitude of shakedown loads and the behaviour of failure.


Gaussian Point Kinematic Hardening Initial Yield Stress Shakedown Analysis Overlay Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Belytschko, T.: Plane stress shakedown analysis by finite elements, Int. J. Mech. Sci. 14 (1972), 619–625.CrossRefGoogle Scholar
  2. [2]
    Bree, J.: Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements, Journal of Strain Analysis 2 (1967), 226–238.CrossRefGoogle Scholar
  3. [3]
    Besseling, J.F.: Models of metal plasticity: theory and experiment, in Sawczuk and Bianchi (ed.): Plasticity Today, Elsevier, Appl. Sci. Publ. London-New York (1985), 97–113.Google Scholar
  4. [4]
    Corradi, L., Zavelani, I.: A linear programming approach to shakedown analysis of structures, Comp. Mech. Appl. Mech. Eng. 3 (1974), 37–53.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Gross-Weege, J.: Zum Einspielverhalten von Flächentragwerken Dissertation, Inst. für Mech., Ruhr-Universität Bochum (1988).Google Scholar
  6. [6]
    Koiter, W.T.: General theorems for elastic-plastic solids, In: Progress in Solid Mechanics, North Holland, Amsterdam (1960), 165–221.Google Scholar
  7. [7]
    König, J.A.: On shakedown of structures in a material exhibiting strainhardening (in Polish), IPPT Reports, No. 18 (1971).Google Scholar
  8. [8]
    König, J.A.: Shakedown of Elastic-Plastic Structures, Elsevier PWN-Polish Scientific Publishers, Warsaw 1987.Google Scholar
  9. [9]
    Maier, G.: A shakedown matrix theory allowing for worhardening and second-order geometric effects, In Proc. Symp. Foundations of Plasticity (ed. Sawczuk), Noordhoof, Leyden (1972), 417–433.Google Scholar
  10. [10]
    Masing, G.: Zur Heyn’schen Theorie der Verfestigung der Metalle durch verborgen elastische Spannungen, Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern 3 (1924), 231–239.Google Scholar
  11. [11]
    Melan, E.: Der Spannungszustand eines Mises-Henckyschen Kontinuums bei veränderlicher Belastung, Sitzber. Akad. Wiss. Wien IIa 147 (1938), 73–78.Google Scholar
  12. [12]
    Neal, B.G.: Plastic collapse und shake-down theorems for structures of strain-hardening material, J. Aero. Sci. 17 (1950), 297–306.MathSciNetGoogle Scholar
  13. [13]
    Schittkowski, K.: The nonliear programming method of Wilson, Han, and Powell with an augmented Larangian type line search function, Numer. Math. 38 (1981), 83–127.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    Stein, E., Zhang, G., Mahnken, R., König, J.A.: Micromechanical modelling and computation of shakedown with nonlinear kinematic hardening including examples for 2-D probems, In Proc. CSME Mechanical Engineering Forum, Toronto (1990).Google Scholar
  15. [15]
    Weichert, D., Gross-Weege, J.: The numerical assessment of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition, Int. J. Mech. Sci. 30 (1988), 757–767.CrossRefMATHGoogle Scholar
  16. [16]
    Zhang, G., Stein, E., König, J.A.: Shakedown with nonlinear strainhardening including structural computation using finite element method, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • Erwin Stein
    • 1
  • Genbao Zhang
    • 1
  • Jan A. König
    • 2
  1. 1.Institut für Baumechanik und Numerische MechanikUniversität HannoverFederal Republic of Germany
  2. 2.Institute of Fundamental Technological ResearchWarsawPoland

Personalised recommendations