Skip to main content

Influence of Different Substances on Urinary Enzyme Excretion

  • Chapter
Urinary Enzymes

Abstract

Ever since the development of the first ionic monomeric contrast medium in 1952 [31], tri-iodinated benzoic acid derivatives have been of great importance as diagnostic X-ray contrast media. One has to differentiate between two main classes of these agents, the ionic monomer (e.g. amidotrizoate) and dimer (e.g. ioxaglate) class and non-ionic monomer (e.g. iohexol, iopamidol, iopromide, iosimide and metrizamide) and dimer (e.g. SH H 340 AB: 5,5′-oxayldiimino-bis-[2,4,6,-triiodo-N,N′-bis-(2,3-dihydroxypropyl)-N, N′-dimethyl-isophthala-mide]; 300 mg iodine/ml) class. In pre-clinical studies (with experimental animals) as well as in clinical studies (with humans) the aspect of nephrotoxicity is of special importance because of the almost total renal elimination of these water soluble contrast media [34]. However, in these studies, mostly serum urea nitrogen, serum creatinine, proteinuria and cellular components in urine have been used as parameters for detecting nephrotoxicity, in addition to some cases of histomorphological examination of the kidneys in animal experiments. Since determinations of urinary enzymes have been shown to be sensitive in predicting renal lesions in animals and humans [4, 18–21, 32], many X-ray contrast media have now been studied in animal experiments using rats, rabbits and dogs as the animal subjects and including enzyme determinations. This section deals with the effect of some contrast media on the excretion of various enzymes in urine with regard to their localization in different segments of the nephron and their correlation with other parameters such as serum urea nitrogen and creatinine level as well as histomorphological changes in animal species. Many enzymes from different subcellular locations which have been used to assess the early kidney changes in animal species after contrast media application are presented in Table 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bani E, Federighi F, Ghio R, Marchitiello M, Galigani P, Palla R (1985) The use of iohexol in pediatric urography: a comparative study with meglumine diatrizoate. Int J Pediatr Nephrol 6:271–274.

    PubMed  CAS  Google Scholar 

  2. Battenfeld R (1988) Licht-und elektronenmikroskopische Untersuchungen der osmotischen Nephrose nach Applikation eines Röntgenkontrastmittels. Dissertation, Tierärztliche Hochschule, Hannover.

    Google Scholar 

  3. Bhargava AS, Siegmund F (1983) Ergebnisse diagnostischer Untersuchungen zur Beurteilung der Nierenverträglichkeit eines Röntgenkontrastmittels bei der Ratte. J Clin Chem Clin Biochem 21:240.

    Google Scholar 

  4. Bhargava AS, Khater AR, Günzel P (1978) The correlation between lactate dehydrogenase activity in urine and serum and experimental renal damage in the rat. Toxicol Lett 1:319–323.

    CAS  Google Scholar 

  5. Bhargava AS, Hofmeister R, Siegmund F, Schöbel C, Günzel P (1990) Effect of three non-ionic contrast media on rats and rabbits with regard to renal changes (interspecies comparison). Arzneimittel-forsch Vol. 40:822–829.

    CAS  Google Scholar 

  6. Burchardt U (1975) Alaninaminopeptidaseausscheidung mit dem Harn und osmotische Ne-phropathie. Z Inn Med 30:65–69.

    CAS  Google Scholar 

  7. Cavaliere G, Arrigo G, D’Amico G, Bernasconi P, Schiavina G, Dellafiore L, Vergnaghi D (1987) Tubular nephrotoxicity after intravenous urography with ionic high-osmolal and non-ionic low-osmolal contrast media in patients with chronic renal insufficiency. Nephron 46:128–133.

    PubMed  CAS  Google Scholar 

  8. Cigarroa RG, Lange RA, Williams RH, Hillis LD (1989) Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med 86:649–652.

    PubMed  CAS  Google Scholar 

  9. Donadio C, Tramonti G, Giordani R, Lucchetti A, Calderazzi A, Sbragia P, Bianchi C (1988) Glomerular and tubular effects of ionic and nonionic contrast media (diatrizoate and iopamidol). Contrib Nephrol 68:212–219.

    PubMed  CAS  Google Scholar 

  10. Gale ME, Robbins AH, Hamburger RJ, Widrich WC (1984) Renal toxicity of contrast agents:iopamidol, iothalamate and diatrizoate. AJR 142:333–335.

    PubMed  CAS  Google Scholar 

  11. Golman K, Holtas S (1980) Proteinuria produced by urographic contrast media. Invest Radiol 15:61–66.

    Google Scholar 

  12. Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26:101–111.

    PubMed  CAS  Google Scholar 

  13. Hartmann HG, Jutzler GA, Bambauer R, Keller HE, Maruhn D (1984) Enzymbestimmungen im Harn zur Beurteilung der Nierenverträglichkeit des wasserlöslichen Röntgen-Kontrastmittels Iopamidol. Radiologe 24:442–445.

    PubMed  CAS  Google Scholar 

  14. Hofmeister R (1988) Untersuchungen zur Nephrotoxizität von ionischen und nichtionischen Röntgenkontrastmitteln bei Ratten mit vorgeschädigten und nicht vorgeschädigten Nieren unter besonderer Berücksichtigung der Harnenzymdiagnostik. Dissertation, Free University of Berlin, Department of Veterinary Medicine.

    Google Scholar 

  15. Hofmeister R, Bhargava AS, Günzel P (1986) Value of enzyme determinations in urine for the diagnosis of nephrotoxicity in rats. Clin Chim Acta 160:163–167.

    PubMed  CAS  Google Scholar 

  16. Hofmeister R, Bhargava AS, Günzel P (1990) The use of urinary N-acetyl-β-D-glucosaminidase (NAG) for the detection of contrast-media-induced “osmotic nephrosis” in rats. Toxicol Lett 50:9–15.

    PubMed  CAS  Google Scholar 

  17. Jevnikar AM, Finnie KJC, Dennis B, Plummer DT, Avila A, Linton AL (1988) Nephrotoxicity of high-and low-osmolality contrast media. Nephron 48:300–305.

    PubMed  CAS  Google Scholar 

  18. Maruhn D, Paar D, Hartmann HG, Bock KD, Bomhard E, Lorke D (1981) Enzyme patterns of rat urine in folate-induced acute renal failure. In: Brown SS, Davies DS (eds) Organ-directed toxicity chemical indices and mechanisms (IUPAC). Pergamon, Oxford, pp 69–73.

    Google Scholar 

  19. Mondorf AW, Breier J, Hendus J, Scherberich JE, Mackenrodt G, Shah PM, Stille W, Schoeppe W (1978) Effect of aminoglycosides on proximal tubular membranes of the human kidney. Eur J Clin Pharmacol 13:133–142.

    PubMed  CAS  Google Scholar 

  20. Price RG (1982) Urinary enzymes, nephrotoxicity and renal disease. Toxicology 23:99–134.

    PubMed  CAS  Google Scholar 

  21. Raab WP (1972) Diagnostic value of urinary enzyme determinations. Clin Chem 18:5–25.

    PubMed  CAS  Google Scholar 

  22. Rygaard H, Dorph S, Thomsen HS, Mygind T, Nielsen H, Larsen S, Skaarup P, Hemmingsen L, Holm J (1988) Effects of intravenous injection of diatrizoate, iohexol or ioxilan on renal size, urine profiles and blood profiles in the rabbit. Acta Radiol 29:491–494.

    PubMed  CAS  Google Scholar 

  23. Schultz SG, Lavelle KJ, Swain R (1982) Nephrotoxicity of radiocontrast media in ischemic renal failure in rabbits. Nephron 32:113–117.

    PubMed  CAS  Google Scholar 

  24. Shimada H, Endou H, Sakai F (1982) Distribution of gamma-glutamyl-transpeptidase and glutaminase isoenzymes in the rabbit single nephron. Jpn J Pharmacol 32:121–129.

    PubMed  CAS  Google Scholar 

  25. Sovak M, Talner LB, Rushmer HN, Dunn CR (1973) Adhesive contrast material in the canine upper urinary tract. Invest Radiol 8:61–67.

    PubMed  CAS  Google Scholar 

  26. Talner LB, Rushmer HN, Coel MN (1972) The effect of renal artery injection of contrast material on urinary enzyme excretion. Invest Radiol 7:311–322.

    PubMed  CAS  Google Scholar 

  27. Thomsen HS, Dorph S, Mygind T, Sovak M, Nielsen H, Rygaard H, Larsen S, Skaarup P, Hemmingsen L, Holm J (1988) Intravenous injection of ioxilan, iohexol and diatrizoate, Effects on urine profiles in the rat. Acta Radiol 29:131–136.

    PubMed  CAS  Google Scholar 

  28. Thomsen HS, Dorph S, Mygind T, Hemmingsen L, Holm J, Larsen S, Nielsen H, Rygaard H, Skaarup P (1988) Urine profiles following intravenous diatrizoate, iohexol, or ioxilan in rats. Invest Radiol 23:168–170.

    Google Scholar 

  29. Thomsen HS, Hemmingsen L, Dorph S, Skaarup P (1988) Effects on urine profiles of diatrizoate in hydrated and dehydrated rats, A double cross-over study. Acta Radiol 29:731–735.

    PubMed  CAS  Google Scholar 

  30. Thomsen HS, Dorph S, Mygind T, Nielsen H, Rygaard H, Larsen S, Skaarup P, Hemmingsen L, Holm J (1988) Do contrast media aggravate Fanconi’s Syndrome in rats? A comparison of diatrizoate, iohexol and ioxilan. Invest Radiol 23:164–167.

    Google Scholar 

  31. Wallingford VH (1952) 3-carboxylic-acylamino-2,4,6-triiodobenzoic acids and the ethyl ester and nontoxic salts. U.S. patent 2, 611, 786:23. September.

    Google Scholar 

  32. Watanabe M, Nomura G, Hirata M, Imai K, Koizumi H (1980) Studies on the validity of urinary enzyme assay in the diagnosis of drug-induced renal lesions in rats. Toxicol Pathol 8:22–33.

    CAS  Google Scholar 

  33. Wrigge P, Malyusz M (1988) Enzymurie nach Kontrastmittelgabe bei hypertonen Ratten. Röntgenblätter 41:332–335.

    PubMed  CAS  Google Scholar 

  34. Zurth C (1984) Mechanism of renal excretion of various x-ray contrast materials in rabbits. Invest Radiol 2:110–115.

    Google Scholar 

References

  1. Adelman RD, Conzelman G, Spangler W, Ishizaki G (1977) Furosemide potentiated gentamicin nephrotoxicity: early detection by monitoring of urinary enzymes. Kidney Int 12:538.

    Google Scholar 

  2. Adelman RD, Conzelman G, Spangler W, Ishazaki G (1979) Comparative nephrotoxicity of gentamicin and netilmycin: functional and morphological correlation with urinary enzyme activities. Curr Probl Clin Biochem 9:166–182.

    PubMed  CAS  Google Scholar 

  3. Adelman RD, Spangler WL, Beasom F, Ishizaki G, Conzelman GM (1979) Furosemide enhancement of experimental gentamicin nephrotoxicity: comparison of functional and morphological changes with activities of urinary enzymes. J Infect Dis 140:342–352.

    PubMed  CAS  Google Scholar 

  4. Appel GB, Neu HC (1977) The nephrotoxicity of antimicrobial agents. II N Engl J Med 296:722–728.

    CAS  Google Scholar 

  5. Atkinson RM, Currie JP, Davis B, Pratt DAH, Sharpe HM, Tomich EG (1966) Acute toxicity of cephaloridine, an antibiotic derived from cephalosporin C. Toxicol Appl Pharmacol 8:398–406.

    PubMed  CAS  Google Scholar 

  6. Beauchamp D, Poirier A, Bergeron MG (1985) Increased nephrotoxicity of gentamicin in pyelonephritic rats. Kidney Int 28:106–113.

    PubMed  CAS  Google Scholar 

  7. Beck H, Sack K (1979) Experimentelle Untersuchungen zur Nierenverträglichkeit der Amino-glykoside Gentamicin B und O-2-Amino-2-deoxy-6-C-methyl-α-D-glucopyranosyl-(1 → 4)-garamin (G-418). Arzneimittelforschung 29:1695–1700.

    PubMed  CAS  Google Scholar 

  8. Beck H, Züllich B, Marre R, Sack K (1979) Tierexperimentelle Untersuchungen zur Nephrotox-izität von 7 Aminoglycosiden bei Langzeitbehandlung. Arzneimittelforschung 29:935–939.

    PubMed  CAS  Google Scholar 

  9. Beck H, Eikenberg P, Sack K (1980) Experimentelle Untersuchungen zur Nierenverträglichkeit der Aminoglykoside Butirosin und Bekanamycin. Arzneimittelforschung 30:288–294.

    PubMed  CAS  Google Scholar 

  10. Beck H, Nierhoff N, Sack K (1980) Tierexperimentelle Untersuchungen zur Nephrotoxizität neuer Cephalosporin-Antibiotika: Cefamandol, EMD 29 645 und 29 946. Arzneimittelforschung 30:660–666.

    PubMed  CAS  Google Scholar 

  11. Burchardt U, Peters JE, Neef L, Thulin H, Gründig A, Haschen RJ (1977) Der diagnostische Wert von Enzymbestimmungen im Harn. Z Med Lab Diag 18:190–212.

    CAS  Google Scholar 

  12. Burchardt U, Schinköthe G, Müller G, Neef L, Krosch H (1978) Ausscheidungskinetik von Enzymen und Protein mit dem Harn bei Applikation therapeutischer Gentamycindosen. Schweiz Med Wochenschr 108:1541–1545.

    PubMed  CAS  Google Scholar 

  13. Carver MP, Monteiro-Riviere NA, Brown TT, Riviere JE (1985) Dose-response studies of gentamicin nephrotoxicity in rats with experimental renal dysfunction. II. Polyvinyl alcohol glomerulopathy. Toxicol Appl Pharmacol 80:264–273.

    PubMed  CAS  Google Scholar 

  14. Carver MP, Shy-Modjeska JS, Brown TT, Rogers RA, Riviere JE (1985) Dose-response study study of gentamicin nephrotoxicity in rats with experimental renal dysfunction. I. Subtotal surgical nephrectomy. Toxicol Appl Pharmacol 80:251–263.

    PubMed  CAS  Google Scholar 

  15. Cojocel C, Dociu N, Ceacmacudis E, Baumann K (1984) Nephrotoxic effects of aminoglyco-side treatment on renal protein reabsorption and accumulation. Nephron 37:113–119.

    PubMed  CAS  Google Scholar 

  16. Conzelman GM, Gribbi DH (1973) Urinary excretion of β-glucuronidase after administration of neomycin to rats. Toxicol Appl Pharmacol 26:158–160.

    PubMed  CAS  Google Scholar 

  17. Dellinger P, Murphy T, Pinn V, Barza M, Weinstein L (1976) The protective effect of cephalotin against gentamicin-induced nephrotoxicity in rats. Antimicrob Agents Chemother 9:172–178.

    PubMed  CAS  Google Scholar 

  18. Dzuriková V, Krechňáková A (1981) Nefrotoxicita gentamicínu a ortuti v experimente na potkanoch. Bratisl Lek Listy 76:21–28.

    PubMed  Google Scholar 

  19. Fent K, Mayer E, Zbinden G (1988) Nephrotoxicity screening in rats: a validation study. Arch Toxicol 61:349–358.

    PubMed  CAS  Google Scholar 

  20. Fillastre JP, Laumonier R, Humbert G, Dubois D, Metayer J, Delpech A, Leroy J, Robert M (1973) Acute renal failure associated with combined gentamicin and cephalotin therapy. Br Med J 1:396–397.

    Google Scholar 

  21. Gibey R, Dupond JL, Alber D, Leconte des Floris R, Henry JC (1981) Predictive value of urinary N-acetyl-β-D-glucosaminidase (NAG), alanine-aminopeptidase (AAP) and β-D-micro-globulin (β2M) in evaluating nephrotoxicity of gentamicin. Clin Chem Acta 116:25–34.

    CAS  Google Scholar 

  22. Gilbert DN, Houghton DC, Bennett WM, Plamp CE, Reger K, Porter GA (1979) Reversibility of gentamicin nephrotoxicity in rats: recovery during continuous drug administration. Proc Soc Exp Biol Med 160:99–103.

    PubMed  CAS  Google Scholar 

  23. Gray JE, Purmalis A, Purmalis B, Mathews J (1971) Ultrastructural studies of the hepatic changes brought about by clindamycin and erythromycin in animals. Toxicol Appl Pharmacol 19:217.

    PubMed  CAS  Google Scholar 

  24. Grötsch H (1984) Enzymurie und Nierenschädigung. In: Experimentelle Pathologic Symposium, 23 Nov. Hoechst, Frankfurt/M pp 41–49.

    Google Scholar 

  25. Hsu CH, Kurtz TW, Easterling RE, Weller IM (1974) Potentiation of gentamicin nephrotoxicity by metabolic acidosis. Proc Soc Exp Ther Med 146:894–897.

    CAS  Google Scholar 

  26. Kahn T (1977) Effect of furosemide on gentamicin and netilmycin nephrotoxicity. Kidney Int 12:527.

    Google Scholar 

  27. Kluve WM, Hook JB (1978) Functional nephrotoxicity of gentamicin in the rat. Toxicol Appl Pharmacol 45:163–175.

    Google Scholar 

  28. Kolb R, Mautner Markhof C, Zekert F (1976) Verhalten von Harnenzymen nach Vitamin A, Gentamycin und Klemmung der Nierenarterien. Wien Klin Wochenschr 88:463–467.

    PubMed  CAS  Google Scholar 

  29. Kosek JC, Mazze RI, Cousins MJ (1974) Nephrotoxicity of gentamicin. Lab Invest 30:48–57.

    PubMed  CAS  Google Scholar 

  30. Koseki C, Endou H, Sudo J, Shimada H, Sakai F (1980) Evaluation of nephrotoxic site in rat proximal tubule: Intrarenal distribution of three enzymes and effects of mercuric chloride and gentamicin on their excretion into urine. Nippon yakungaku zasshi 76:59–69.

    CAS  Google Scholar 

  31. Luft FC, Patel V (1978) Lysosomal acid hydrolases as urinary markers of aminoglycoside nephrotoxicity in the rat. In: Fillastre JP (ed) Nephrotoxicity. Masson, New York, pp 127–141.

    Google Scholar 

  32. Luft FC, Patel V, Yum MN, Kleit SA (1976) Nephrotoxicity of cephalosporin-gentamicin combinations in rats. Microb Agents Chemother 9:831–839.

    CAS  Google Scholar 

  33. Luft F, Bloch R, Yum M, Sloan RM (1977) Comparative aminoglycoside nephrotoxicity in rats. Kidney Int 12:528.

    Google Scholar 

  34. Marre R, Abraham M, Freisleben H, Sack K (1979) Netilmicin und Tobramycin: vergleichende tierexperimentelle Untersuchungen zur Pharmakokinetik, Nierenverträglichkeit und therapeutischen Effektivität. Arzneimittelforschung 29:940–945.

    PubMed  CAS  Google Scholar 

  35. Marre R, Tarara N, Louton T, Sack K (1980) Age-dependent nephrotoxicity and the pharma-cokinetics of gentamicin in rats. Eur J Pediatr 133:25–29.

    PubMed  CAS  Google Scholar 

  36. McMartin DN, Engel SG (1982) Effect of aging on gentamicin nephrotoxicity and pharma-cokinetics in rats. Res Commun Chem Pathol Pharmacol 32:193–207.

    Google Scholar 

  37. Mondorf AW, Breier J, Hendus J, Scherberich JE, Mackenrodt G, Shah PM, Stille W, Schoeppe W (1978) Effect of aminoglycosides on proximal tubular membranes of the human kidney. Eur J Clin Pharmacol 13:133–142.

    PubMed  CAS  Google Scholar 

  38. Mozer JL, Gibey R, Henry JC (1989) Inhibition de l’activité de la N-acetyl-β-D-glucosaminidase (NAG) urinaire et de ses isoenzymes par l’amikacine. C R Soc Biol (Paris) 183:166–173.

    CAS  Google Scholar 

  39. Patel V, Luft FC, Moo Nahm Yum, Patel B, Zeman W, Kleit SA (1975) Enzymuria in gentamicin-induced kidney damage. Antimicrob Agents Chemother 7:364–369.

    PubMed  CAS  Google Scholar 

  40. Pariat C, Courtois P, Cambar J, Piriou A, Bouquet S (1988) Circadian variations in the renal toxicity of gentamicin in rats. Toxicol Lett 40:175–1802.

    PubMed  CAS  Google Scholar 

  41. Porter GA, Bennett WM (1989) Drug induced renal effects of cyclosporine, aminoglycoside antibiotics and lithium: extrapolation of animal data to man. In: Bach PH, Lock EA (eds) Nephrotoxicity: in vitro to in vivo: animals to man. Plenum, New York, pp 147–170.

    Google Scholar 

  42. Raab W (1979) Investigations on the action of cefazedone and gentamicin, alone and combined, on renal enzyme excretion in rats. Arzneimittelfoschrung 29:433–435.

    CAS  Google Scholar 

  43. Raab W (1980) Nephrotoxicity of drugs, evaluated by renal enzyme excretion studies. Arch Toxicol [suppl] 4:194–200.

    CAS  Google Scholar 

  44. Sack K, Freisleben H (1975) Experimentelle Untersuchungen zur potentiellen Nephrotoxizität von Tobramycin, Gentamicin und Sisomicin. Infection 3:40S–49S.

    Google Scholar 

  45. Sack K, Wilhelm J (1973) Vergleichende Untersuchungen zur Nephrotoxizität von Aminogly-kosiden: Gentamycin und Tobramycin. Verh Dtsch Ges Inn Med 79:676–678.

    PubMed  CAS  Google Scholar 

  46. Sack K, Wilhelm J (1975) The diagnostic value of enzymuria, cell excretion, and proteinuria in experimental renal diseases. Urol Res 3:31–40.

    PubMed  CAS  Google Scholar 

  47. Sack K, Züllich B (1978) Differenzierung der nephrotoxichen Potenzen von Aminoglykosiden und Cephalosporinen im Tierexperiment. Therapiewoche 28:2107–2114.

    Google Scholar 

  48. Sack K, Freisleben H, Züllich B, Beck H, Schulz E (1976) Nebenwirkungen von Aminoglycosiden: Nephrotoxizität. Infection 4:231–238.

    PubMed  CAS  Google Scholar 

  49. Sack K, Lepere A, Schwieder G (1978) Nierenverträglichkeit von Cephalosporinantibiotika: Cefoxitin und HR 756. Med Welt 29:1233–1236.

    PubMed  CAS  Google Scholar 

  50. Schinköthe G, Burchardt U, Anton D, Müller G, Patsch R (1982) Medikamenteninduzierte Nephropathie und Enzyme renalen Ursprungs im Harn. Z Urol Nephrol 75:571–577.

    PubMed  Google Scholar 

  51. Silverblatt FJ, Kuehn C (1979) Autoradiography of gentamicin uptake by the rat proximal tubule cell. Kidney Int 15:335–345.

    PubMed  CAS  Google Scholar 

  52. Silverblatt F, Turck M, Bulger R (1970) Nephrotoxicity due to cephaloridine: a light and electrone microscopic study in rabbits. J Infect Dis 122:33–44.

    PubMed  CAS  Google Scholar 

  53. Sugerman A, Brown RS, Silva P, Rosen S (1983) Features of gentamicin nephrotoxicity and effect of concurrent cephalotin in the rat. Nephron 34:239–247.

    Google Scholar 

  54. Terhorst B, Lymberopoulos S, Buss H (1971) Tierexperimentelle und klinische Untersuchungen zur Frage der Nephrotoxizität von Cephaloridin. Med Welt 22:1565–1569.

    CAS  Google Scholar 

  55. Tune BM (1975) Relationship between the transport and toxicity of cephalosporins in the kidney. J Infect Dis 132:189–194.

    PubMed  CAS  Google Scholar 

  56. Tune BM, Wu KY, Kempson RL (1977) Inhibition of transport and prevention of toxicity of cephaloridine in the kidney. Dose-responsiveness of the rabbit and the guinea pig to probenecid. J Pharmacol Exp Ther 202:433–471.

    Google Scholar 

  57. Tune BM, Wu KY, Longerbeam DF, Kempson RL (1977) Transport and toxicity of cephalos-poridine in the kidney. Effect of flurosemide, p-aminohippurate and saline diuresis. J Pharmacol Exp Ther 202:472–478.

    PubMed  CAS  Google Scholar 

  58. Wachsmuth ED (1981) Nephrotoxicity of cefotiam (CGP 14221/E) in rats and rabbits. Arch Toxicol 48:135–156.

    PubMed  CAS  Google Scholar 

  59. Wachsmuth E, Wirz H (1979) Relevance of enzyme evaluation in 24th urine to rat kidney injury caused by i.v. cephaloridine injection. Curr Probl Clin Biochem 9:88–104.

    PubMed  CAS  Google Scholar 

  60. Watanabe M, Nomura G, Hirata M, Imai K, Koizumi H (1980) Studies on the validity of urinary enzyme assay in the diagnosis of drug-induced renal lesions in rats. Toxicol Pathol 8:2233.

    Google Scholar 

  61. Wellwood JM, Lowell D, Thompson AE, Tighe JR (1976) Renal damage caused by gentamicin: a study of the effects on renal morphology and urinary enzyme excretion. J Pathol 118:171–182.

    PubMed  CAS  Google Scholar 

  62. Wilhelm J, Sack K (1975) Tierexperimentelle Studie zur Frage der Nephrotoxizität von Cephalotin und Cephalotin-Aminoglykosid-Kombinationen. Infection 3:89S–95S.

    Google Scholar 

  63. Yver L, Becq-Giraudon B, Pourrat O, Sudre Y (1976) La néphrotoxicite de l’association methilcillin-gentamicine. Sem Hop Paris 52:1903–1907.

    PubMed  CAS  Google Scholar 

  64. Züllich B, Sack K (1978) Amikacin und Kanamycin. Vergleichende Untersuchungen zur Nephrotoxizität. Arzneimittelforschung Res 28:271–278.

    Google Scholar 

  65. Züllich B, Sack K (1979) Experimental investigations of the renal tolerance of cefazedone. Arzneimittelforschung 29:430–433.

    PubMed  Google Scholar 

References

  1. Brennan MF, Taverner PL, McKenzie RG, Macbeth WAAG (1970) Effects of furosemide upon renal excretion of protein, ribonuclease and lysozyme. Proc Univ Otago Med Sch 48:60–61.

    Google Scholar 

  2. Grötsch H, Hropot M, Kief H, Klaus E (1984) Enzymuria in rats under treatment with diuretics. Diuretics J Puschett by Elsevier Science Publ Co Inc 514–518.

    Google Scholar 

  3. Guarnieri G, Ianche M, Lin S (1979) Renal enzyme and protein excretion after induction of a diureses. Brit Med J:50–51.

    Google Scholar 

  4. Helmchen U, Fischbach H, Schmidt U (1971) Akute Schaden des proximalen Tubulusepithels der Rattenniere nach einer einmaligen hochdosierten Furosemid-Gabe. Klin Wochenschr 49:1298–1300.

    PubMed  CAS  Google Scholar 

  5. Hohenegger M, Raab W (1970) Das Verhalten der Enzymaktivitäten im Harn bei Veränderung der Wasser-und Ionenausscheidung. Clin Chim Acta 28:61–65.

    PubMed  CAS  Google Scholar 

  6. Ylitalo P, Pasternack A, Kallio S, Vaenttinen T, Metsae-Ketelae T (1980) Increased urinary protein excretion after intravenous injection of furosemide in man. Acta Med Scand 208:279–283.

    PubMed  CAS  Google Scholar 

References

  1. Bass NM, Kirsch RE, Tuff SA, Campbell JA, Saunders JS (1979) Radioimmunoassay measurement of urinary ligandin excretion in nephrotoxin-treated rats. Clin Sci 56:419–426.

    PubMed  CAS  Google Scholar 

  2. Bernard A, Buchet JP, Roels H, Masson P, Lauwerys R (1979) Renal excretion of proteins and enzymes in workers exposed to cadmium. Eur J Clin Invest 9:11–22.

    PubMed  CAS  Google Scholar 

  3. Bhargava AS, Khater AR, Günzel P (1978) The correlation between lactate dehydrogenase activity in urine and serum and experimental renal damage in the rat. Toxicol Lett 1:319–323.

    CAS  Google Scholar 

  4. Bomhard E, Maruhn D, Paar D, Wehling K (1984) Urinary enzyme measurements as sensitive indicators of chronic cadmium nephrotoxicity. Contrib Nephrol 42:142–147.

    PubMed  CAS  Google Scholar 

  5. Bomhard E, Maruhn D, Vogel O (1986) Comparative investigations on the effects of acute intraperitoneal cadmium, chromium, and mercury exposure on the kidney. Uremia Invest 9:131–136.

    CAS  Google Scholar 

  6. Bonner FW, Laurence JK, Parke DV (1980) The urinary excretion of alkaline phosphatase after the repeated parenteral administration of cadmium to rats given a high dietary supplement of zinc. Toxicol Lett 6:369–372.

    PubMed  CAS  Google Scholar 

  7. Boscolo P, Porcelli G, Cechetti G, Salimei E, Iannaccone A (1978) Urinary kallikrein activity of workers exposed to lead. Br J Ind Med 35:226–229.

    PubMed  CAS  Google Scholar 

  8. Boscolo P, Porcelli G, Carmignani M, Finelli VN (1981) Urinary kallikrein and hypertension in cadmium-exposed rats. Toxicol Lett 7:189–194.

    PubMed  CAS  Google Scholar 

  9. Braun JP, Rico AG, Bernard P, Burgat-Sacaze V, Eghbali B, Godfrain JC (1978) La gamma-glutamyl transferase urinaire en toxicologie renale chez le rat. Bases de son utilisation-interet lors de nephrite aigue mercurielle. Toxicology 11:73–82.

    PubMed  CAS  Google Scholar 

  10. Burgat-Sacaze V, Braun JP, Rico A, Bernard P, Eghbali B (1980) Methoxyethylmercury nephrotoxicity: effects on enzymuria and kidney function. Arch Toxicol 43:227–231.

    PubMed  CAS  Google Scholar 

  11. Cain K (1987) Metallothionein and its involvement in the heavy metal induced nephropathy. In: Bach PH, Lock EA (eds) Nephrotoxicity in the experimental and clinical situation. Nijhoff, Dordrecht, pp 473–531.

    Google Scholar 

  12. Chmielnicka J, Komsta-Szumska E, Szymanska JA (1981) Arginase and kallikrein activities as biochemical indices of occupational exposure to lead. Br J Ind Med 38:175–178.

    PubMed  CAS  Google Scholar 

  13. Dierickx PJ (1989) Urinary gamma-glutamyl transferase as a specific marker for mercury after heavy metal treatment of rats. Toxicol Lett 6:235–238.

    Google Scholar 

  14. Emanuelli G, Cestonaro G, Anfossi G, Calcamuggi G, Gatti G, Marcarino C (1982) Urinary enzyme excretion and renal lactate dehydrogenase isoenzyme pattern in acute HgCl2 nephropathy of rat. Enzyme 27:89–98.

    PubMed  CAS  Google Scholar 

  15. Feinfeld DA, Bourgoignie JJ, Fleischner G, Goldstein EJ, Biempica L, Arias IM (1977) Ligandinuria in nephrotoxic acute tubular necrosis. Kidney Int 12:387–392.

    PubMed  CAS  Google Scholar 

  16. Flora SJS, Singh S, Tandon SK (1983) Role of selenium in protection against lead intoxication. Acta Pharmacol Toxicol 53:28–32.

    CAS  Google Scholar 

  17. Fowler BA, Kimmel CA, Woods JS, McConnell EE, Grant DL (1980) Chronic low-level lead toxicity in the rat. Toxicol Appl Pharmacol 56:59–77.

    PubMed  CAS  Google Scholar 

  18. Franchini I, Mutti A, Cavatorta A, Corradi A, Cosi A, Olivetti G, Borghetti A (1978) Nephrotoxicity of chromium. Contrib Nephrol 10:98–100.

    PubMed  CAS  Google Scholar 

  19. Gatta A, Bazzerla G, Amodio P, Menon F, Angeli P, Schiaffino E, Schmid C (1989) Detection of the early steps of cadmium nephropathy—comparison of light and electron-microscopical patterns with the urinary enzymes excretion. Nephron 51:20–24.

    PubMed  CAS  Google Scholar 

  20. Girolami JP, Bascands JL, Pécher C, Cabos G, Moatti JP, Mercier JF, Haguenoer JM, Manuel Y (1989) Renal kallikrein excretion as a distal nephrotoxicity marker during cadmium exposure in rats. Toxicology 55:117–129.

    PubMed  CAS  Google Scholar 

  21. Gumbleton M, Nicholls PJ (1988) Dose-response and time-response biochemical and histological study of potassium dichromate-induced nephrotoxicity in the rat. Food Chem Toxicol 26:37–44.

    PubMed  CAS  Google Scholar 

  22. Hofmann U, Segewitz G (1975) Influence of chelation therapy on acute lead intoxication in rats. Arch Toxicol 34:213–225.

    PubMed  CAS  Google Scholar 

  23. Hubermont G, Buchet JP, Roels H, Lauwerys R (1976) Effect of short-term administration of lead to pregnant rats. Toxicology 5:379–384.

    PubMed  CAS  Google Scholar 

  24. Hultman P, Eneström S (1986) Localization of mercury in the kidney during experimental acute tubular necrosis studied by the cytochemical silver amplification method. Br J Exp Pathol 67:493–503.

    PubMed  CAS  Google Scholar 

  25. Iwata K, Katoh T, Morikawa Y, Aoshima K, Nishijo M, Teranishi H, Kasuya M (1988) Urinary trehalase activity as an indicator of kidney injury due to environmental cadmium exposure. Arch Toxicol 62:435–439.

    PubMed  CAS  Google Scholar 

  26. Josepovitz C, Levine R, Lane B, Kaloyanides GJ (1985) Contrasting effects of gentamicin and mercuric chloride on urinary excretion of enzymes and phospholipids in the rat. Lab Invest 52:375–386.

    PubMed  CAS  Google Scholar 

  27. Kawada T, Koyama H, Suzuki S (1989) Cadmium, NAG activity, and β2-microglobulin in the urine of cadmium pigment workers. Br J Ind Med 46:52–55.

    PubMed  CAS  Google Scholar 

  28. Kawai K, Fukuda K, Kimura M (1976) Morphological alterations in experimental cadmium exposure with special reference to the onset of renal lesions. In: Nordberg GF (ed) Effects and dose-response relationships of toxic metals. Elsevier, Amsterdam, pp 343–370.

    Google Scholar 

  29. Kempson SA, Ellis BG, Price RG (1977) Changes in rat renal cortex, isolated plasma membranes and urinary enzymes following the injection of mercuric chloride. Chem Biol Interact 18:217–234.

    PubMed  CAS  Google Scholar 

  30. Khalil-Manesh F, Gonick HC, Weiler E, Rosen V, Roche L, Mutti A, Bergamaschi E, Alinovi R, Franchi I (1989) Early indicators of lead nephropathy. In: Bach PH, Lock EA (eds) Nephrotoxicity: in vitro to in vivo: animals to man. Plenum, New York, pp 119–126.

    Google Scholar 

  31. King LC, Clark V, Faeder EJ (1976) Effects of cadmium exposure on rat kidneys. Bull Environ Contam Toxicol 16:572–577.

    PubMed  CAS  Google Scholar 

  32. Kirschbaum BB (1979) Alanine aminopeptidase excretion after mercuric chloride renal failure. Biochem Med 21:220–225.

    PubMed  CAS  Google Scholar 

  33. Kluwe WM (1982) Development of resistance to nephrotoxic insult: changes in urine composition and kidney morphology on repeated exposures to mercuric chloride or biphenyl. J Toxicol Environ Health 9:619–635.

    PubMed  CAS  Google Scholar 

  34. Kotanko P, Gstraunthaler G, Pfaller W (1984) Harnenzyme zur nicht invasiven Diagnostik von Nierenepithelschäden im akuten Nierenversagen. Wien Klin Wochenschr 96:625–629.

    PubMed  CAS  Google Scholar 

  35. Kyle GM, Luthra R, Bruckner JV, MacKenzie WF, Acosta D (1983) Assessment of functional, morphological and enzymatic tests for acute nephrotoxicity induced by mercuric chloride. J Toxicol Environ Health 12:99–117.

    PubMed  CAS  Google Scholar 

  36. Landrigan PJ (1989) Toxicity of lead at low dose. Br J Ind Med 46:593–596.

    PubMed  CAS  Google Scholar 

  37. Lehotzky K, Bordas S (1971) Urinary and serum transaminase levels in rats with organic mercury poisoning. Acta Med Acad Sci Hung 28:139–143.

    CAS  Google Scholar 

  38. Magos L, Sparrow S, Snowden R (1982) The comparative renotoxicology of phenylmercury and mercuric chloride. Arch Toxicol 50:133–139.

    PubMed  CAS  Google Scholar 

  39. Magos L, Sparrow S, Snowden RT (1984) Effect of prolonged saline loading on HgCl2-induced renal tubular damage. Br J Exp Pathol 65:567–575.

    PubMed  CAS  Google Scholar 

  40. Maruhn D, Paar D, Bomhard E (1983) Diagnostic sensitivity of urinary enzymes in experimental kidney damage in the rat. In: Galteau MM, Siest G, Heung J (eds) Biologie prospective—5e Colloque de Pont-à-Mousson. Masson, Paris, pp 943–945.

    Google Scholar 

  41. Maruhn D, Bomhard E, Paar D (1984) Urine enzyme patterns in the rat after damage to different parts of the nephron. In: Goldberg DM, Werner M (eds) Selected topics in clinical enzymology, vol 2. De Gruyter, Berlin, pp 429–434.

    Google Scholar 

  42. Mason HJ, Somervaille LJ, Tennant DR, Chettle DR, Scott MC (1989) In-vivo bone lead measurements and renal effects. In: Bach PH, Lock EA (eds) Nephrotoxicity: in vitro to in vivo: animals to man. Plenum, New York, pp 113–118.

    Google Scholar 

  43. Mottet NK (1989) A pathologist’s perspective on the toxic effects of mercury compounds. Comments Toxicol 3:179–190.

    CAS  Google Scholar 

  44. Nakano M, Itoh G (1983) Elevation of urinary trehalase in mercuric chloride-induced nephrotoxic rabbits: urinary trehalase as a specific indicator of renal brush border damage. Chem Biol Interact 45:179–189.

    PubMed  CAS  Google Scholar 

  45. Nakano M, Aoshima K, Katoh T, Teranishi H, Kasuya M (1987) Elevation of urinary trehalase activity in patients of itai-itai disease. Arch Toxicol 60:300–303.

    PubMed  CAS  Google Scholar 

  46. Ngaha EO (1981) Renal effects of potassium dichromate in the rat: comparison of urinary enzyme excretion with corresponding tissue patterns. Gen Pharmacol 12:497–500.

    PubMed  CAS  Google Scholar 

  47. Nicholls DM, Teichert-Kuliszewska K, Kuliszewski MJ (1983) The activity of membrane enzymes in homogenate fractions of rat kidney after administration of lead. Toxicol Appl Pharmacol 67:193–199.

    PubMed  CAS  Google Scholar 

  48. Nishimura N, Oshima H, Nakano M (1986) Urinary trehalase as an early indicator of cadmium-induced renal tubular damage in rabbit. Arch Toxicol 59:255–260.

    PubMed  CAS  Google Scholar 

  49. Nogawa K, Yamada Y, Honda R, Tsuritani I, Ishizaki M, Sakamoto M (1983) Urinary N-acetyl-β-D-glucosaminidase and β2-microglobulin in itai-itai disease. Toxicol Lett 16:317–322.

    PubMed  CAS  Google Scholar 

  50. Nomiyama K, Sato C, Yamamoto A (1973) Early signs of cadmium intoxication in rabbits. Toxicol Appl Pharmacol 24:625–635.

    PubMed  CAS  Google Scholar 

  51. Ohata H, Momose K, Takahashi A, Omori Y (1987) Urinalysis for detection of chemically induced renal damage—changes in urinary excretions of enzymes and various components caused by mercuric chloride and gentamicin. J Toxicol Sci 12:341–355.

    PubMed  CAS  Google Scholar 

  52. Ohata H, Hashimoto T, Monose K, Takashi A, Terao T (1988) Urinalysis for detection of chemically induced renal damage—establishment and application of radioimmunoassay for lysozyme of rat urine. Arch Toxicol 62:60–65.

    PubMed  CAS  Google Scholar 

  53. Ong CN, Endo G, Chia KS, Phoon WO, Ong HY (1987) Evaluation of renal function in workers with low blood lead levels. In: Foa V, Emmett EA, Maroni M, Colombi A (eds) Occupational and environmental chemical hazards. Ellis Horwood, Chichester.

    Google Scholar 

  54. Paar D, Maruhn D, Bock KD, Bomhard E, Lorke D (1981) Untersuchungen zur Urokinaseaus-scheidung im Harn der Ratte nach experimenteller Nierenschädigung. In: Bluemel G, Haas S (eds) Mikrozirkulation und Prostaglandinstoffwechsel. Schattauer, Stuttgart, pp 371–374.

    Google Scholar 

  55. Pierce RJ, Price RG, Fowler JSL (1977) The effect of cadmium administration on activities of enzymes in the urine of the rat and marmoset. Biochem Soc Trans 5:238–241.

    PubMed  CAS  Google Scholar 

  56. Planas-Bohne F (1977) The effect of mercuric chloride on the excretion of two urinary enzymes in the rat. Arch Toxicol 37:219–225.

    PubMed  CAS  Google Scholar 

  57. Raab W (1966) Experimentelle Untersuchungen über Veränderungen der “Leucinamino-peptidase”-Aktivität des Harnes. Wien Klin Wochenschr 78:364–369.

    PubMed  CAS  Google Scholar 

  58. Saillenfait AM, Brondeau MT, Zissu D, Ceaurriz de J (1989) Effects of prenatal methylmercury exposure on urinary proximal tubular enzyme excretion in neonatal rats. Toxicology 55:153–160.

    PubMed  CAS  Google Scholar 

  59. Sener S, Braun JP, Rico AG, Bernard P, Burgat-Sacaze V (1979) Urine gamma-glutamyl transferase in rat kidney toxicology: nephropathy by repeated injections of mercuric chloride. Effects of sodium selenite. Toxicology 12:299–305.

    PubMed  CAS  Google Scholar 

  60. Sternberg M, Szlamka I, Moisy M, Rebeyrotte P, Lagrue G (1974) Comparison of the urinary excretion of aspartate aminotransferase, lactic dehydrogenase, alkaline and acid phosphatase and β-galaetosidase during nephrotoxic serum glomerulonephritis and mercuric chloride tubul-onephritis in the rat. Z Klin Chem Klin Biochem 12:543–550.

    PubMed  CAS  Google Scholar 

  61. Stroo WE, Hook JB (1977) Enzymes of renal origin in urine as indicators of nephrotoxicity. Toxicol Appl Pharmacol 39:423–434.

    PubMed  CAS  Google Scholar 

  62. Stroo WE, Hook JB (1977) Renal functional correlates of methyl mercury intoxication: interaction with acute mercuric chloride toxicity. Toxicol Appl Pharmacol 42:399–410.

    PubMed  CAS  Google Scholar 

  63. Sugihira N, Sagai M, Suzuki KT (1987) Renal damage induced by cadmium-metallothionein: effects on biochemical indicators. Toxicology 44:1–11.

    PubMed  CAS  Google Scholar 

  64. Suzuki CAM, Cherian MG (1987) Renal toxicity of cadmium-metallothionein and enzymuria in rats. J Pharmacol Exp Ther 240:314–319.

    PubMed  CAS  Google Scholar 

  65. Tandon SK, Flora SJS, Behari JR, Ashquin M (1984) Vitamin B complex in treatment of cadmium intoxication. Ann Clin Lab Sci 14:487–492.

    PubMed  CAS  Google Scholar 

  66. Tandon SK, Magos L, Carbal JRP (1980) Protection against mercuric chloride by nephrotoxic agents which do not induce thionein. Toxicol Appl Pharmacol 52:227–236.

    PubMed  CAS  Google Scholar 

  67. Tohyama C, Sugihira N, Saito H (1987) Critical concentration of cadmium for renal toxicity in rats. J Toxicol Environ Health 22:255–259.

    PubMed  CAS  Google Scholar 

  68. Vyskocil A, Pancl J, Tusl M, Ettlerova E, Semecky V, Kasparová L, Lauwerys R, Bernard R (1989) Dose-related proximal tubular dysfunction in male rats chronically exposed to lead. J Appl Toxicol 9:395–399.

    PubMed  CAS  Google Scholar 

  69. Watanabe Y, Nonomura F, Tanahashi N, Sugitani A, Yamada F (1985) Preventive effect of pretreatment with zinc on cadmium nephrotoxicity in rats—evaluation by changes of urinary enzyme activities. Ind Health 23:25–36.

    PubMed  CAS  Google Scholar 

  70. Yamamoto A, Yoshida K, Wada O (1981) Origin of urinary alkaline phosphatase excreted by cadmium treatment of rabbits. J Toxicol Sci 6:325–333.

    PubMed  CAS  Google Scholar 

References

  1. Abe H, Shibuya T, Odashima S, Arichi S, Nagase S (1988) Alterations in the glomerulus in aminonucleoside nephrosis in analbuminemic rats. Nephron 50:351–355.

    PubMed  CAS  Google Scholar 

  2. Bach PH, Gregg NJ (1988) Experimentally induced renal papillary necrosis and upper urothelial carcinoma. Int Rev Exp Pathol 30:1–54.

    PubMed  CAS  Google Scholar 

  3. Bomhard E, Maruhn D (1988) Effects of puromycin aminonucleoside on ten urinary enzymes in rats. Arch Toxicol 12:158–161.

    CAS  Google Scholar 

  4. Bomhard E, Maruhn D, Vogel O, Mager H (1990) Determination of urinary glutathione S-transferase and lactate dehydrogenase for differentiation between proximal and distal nephron damage. Arch Toxicol (Supple) 64:269–278.

    CAS  Google Scholar 

  5. Byrnes KA, John MS, Ghidoni JJ, Suzuki M, Thomas H, Mayfield ED (1972) Response of the rat kidney to folic acid administration. Lab Invest 26:191–200.

    PubMed  CAS  Google Scholar 

  6. Carlton WW, Engelhardt JA (1989) Experimental renal papillary necrosis in the Syrian hamster. Food Chem Toxicol 27:331–340.

    PubMed  CAS  Google Scholar 

  7. Ellis BG, Price RG, Topham JC (1973) The effect of papillary damage by ethyleneimine on kidney function and some urinary enzymes in the dog. Chem Biol Interact 7:131–142.

    PubMed  CAS  Google Scholar 

  8. Ellis BG, Price RG (1975) Urinary enzyme excretion during renal papillary necrosis induced in rats with ethyleneimine. Chem Biol Interact 11:473–482.

    PubMed  CAS  Google Scholar 

  9. Fisher ER, Hellstrom MD (1962) Mechanism of proteinuria: functional and ultrastructural correlation of effects of infusion of homologous and heterologous protein (bovine serum albumin) in the rat. Lab Invest 11:617–637.

    PubMed  CAS  Google Scholar 

  10. Gregg NJ, Robbin MEC, Hopewell JW, Bach PH (1989) Morphological changes in the pig kidney associated with an acutely induced renal papillary necrosis. In: Bach PH, Lock EA (eds) Nephrotoxicity: in vitro to in vivo—animals to man. Plenum, New York, pp 407–410.

    Google Scholar 

  11. Halman J, Fowler YSL, Price RG (1985) Urinary enzymes, proteinuria and renal function tests in the assessment of nephrotoxicity in the rat. In: Bach PH, Lock EA (eds) Renal heterogeneity and target cell toxicity. Wiley, Chichester, pp 295–298.

    Google Scholar 

  12. Halman J, Miller J, Fowler JSL, Price RG (1986) Renal toxicity of propyleneimine: assessment by non-invasive techniques in the rat. Toxicology 41:43–59.

    PubMed  CAS  Google Scholar 

  13. Howie AJ, Kizaki T, Beaman M, Morland CM, Birtwistle RJ, Adu D, Michael J, Williams AJ, Walls J, Matsuyama M, Shimizu F (1989) Different types of segmental sclerosing glomerular lesions in six experimental models of proteinuria. J Pathol 157:141–151.

    PubMed  CAS  Google Scholar 

  14. Klingler EL, Evan AP, Anderson RE (1980) Folic acid-induced renal injury and repair. Arch Pathol Lab Med 104:87–93.

    PubMed  CAS  Google Scholar 

  15. Litterst CL, Copley MP (1985) Cisplatin and doxorubicin: a comparative evaluation of nephrotoxicity using serum chemistry, urinalysis, and histology. In: Bach PH, Lock EA (eds) Renal heterogeneity and target cell toxicity. Wiley, Chichester, pp 393–396.

    Google Scholar 

  16. Litterst CL, Weiss RB (1987) Clinical and experimental nephrotoxicity of cancer chemothera-peutic agents. In: Bach PH, Lock EA (eds) Nephrotoxicity in the experimental and clinical situation. Nijhoff, Dordrecht, pp 771–804.

    Google Scholar 

  17. Lock EA (1988) Studies on the mechanism of nephrotoxicity and nephrocarcinogenicity of halogenated alkenes. CRC Crit Rev Toxicol 19:23–42.

    CAS  Google Scholar 

  18. Lock EA, Ishmael J (1979) The acute toxic effects of hexachlorobutadiene on the rat kidney. Arch Toxicol 43:47–57.

    PubMed  CAS  Google Scholar 

  19. Maruhn D, Paar D, Hartmann HG, Bock KD, Bomhard E, Lorke D (1981) Enzyme patterns of rat urine in folate-induced acute renal failure. In: Brown SS, Davies DS (eds) Organ-directed toxicity chemical indices and mechanisms (IUPAC). Pergamon, Oxford, pp 69–73.

    Google Scholar 

  20. Maruhn D, Paar D, Bomhard E (1983) Diagnostic sensitivity of urinary enzymes in experimental kidney damage in the rat. In: Galteau MM, Siest G, Heung J (eds) Biologie Prospective—5e Colloque International de Pont-a-Mousson. Masson, Paris, pp 943–945.

    Google Scholar 

  21. Mimnaugh EG, Trush MA, Gram TE (1986) A possible role for membrane lipid peroxidation in anthracycline nephrotoxicity. Biochem Pharmacol 35:4327–4335.

    PubMed  CAS  Google Scholar 

  22. Nash JA, King LJ, Lock EA, Green T (1984) The metabolism and disposition of hexachloro-1:3-butadiene in the rat and its relevance to nephrotoxicity. Toxicol Appl Pharmacol 73:124–137.

    PubMed  CAS  Google Scholar 

  23. O’Donnell MP, Michels L, Kasiske B, Raij L, Keane WF (1985) Àdriamycin-induced chronic proteinuria: a structural and functional study. J Lab Clin Med 106:62–67.

    PubMed  Google Scholar 

  24. Paar D, Maruhn D, Lögering HJ, Bomhard E (1982) Kallikrein-und Urokinaseausscheidung im Harn der Ratte nach experimenteller Nierenschädigung durch Folsäure. In: Loo van de J, Asbeck F (eds) Haemostase, Thrombophilie und Arteriosklerose. Schattauer, Stuttgart, pp 794–797.

    Google Scholar 

  25. Paar D, Maruhn D, Bock KD, Bomhard E, Lorke D (1982) Urokinase excretion after experimentally induced renal failure in the rat by folic acid. In: Mannucci PM, D’Angelo A (eds) Urokinase: basic and clinical aspects. Academic, London, pp 85–89.

    Google Scholar 

  26. Pfaller W, Joannidis M, Gstraunthaler G, Kotanko P (1989) Quantitative morphologic changes of nephron structures and urinary enzyme activity pattern in sodium-maleate-induced renal injury. Renal Physiol Biochem 12:56–64.

    PubMed  CAS  Google Scholar 

  27. Price RG, Ellis BG (1976) Urinary enzyme excretion in aminonucleoside nephrosis in rats. Chem Biol Interact 13:353–358.

    PubMed  CAS  Google Scholar 

  28. Schmidt U, Dubach UC (1976) Acute renal failure in the folate-treated rat: early metabolic changes in various structures of the nephron. Kidney Int 10:39–45.

    Google Scholar 

  29. Schmidt U, Schlumpf V, Joesch W, Dubach UC (1974) Acute renal failure in the rat after folate intoxication: diagnostic value of lactate dehydrogenase and alkaline phosphatase measurements in serum and urine. Clin Nephrol 2:106–112.

    PubMed  CAS  Google Scholar 

  30. Schubert GE (1976) Folic acid-induced acute renal failure in the rat: morphological studies. Kidney Int 10:46–50.

    Google Scholar 

  31. Stonard MD, Gore CW, Oliver GJA, Smith IK (1987) Urinary enzymes and protein patterns as indicators of injury to different regions of the kidney. Fundam Appl Toxicol 9:339–351.

    PubMed  CAS  Google Scholar 

  32. Stroo WE, Hook JB (1977) Enzymes of renal origin in urine as indicators of nephrotoxicity. Toxicol Appl Pharmacol 39:423–434.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhargava, A.S. et al. (1992). Influence of Different Substances on Urinary Enzyme Excretion. In: Jung, K., Mattenheimer, H., Burchardt, U. (eds) Urinary Enzymes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84313-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84313-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84315-0

  • Online ISBN: 978-3-642-84313-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics